Evaluate
\frac{13}{8}=1.625
Factor
\frac{13}{2 ^ {3}} = 1\frac{5}{8} = 1.625
Share
Copied to clipboard
\begin{array}{l}\phantom{800)}\phantom{1}\\800\overline{)1300}\\\end{array}
Use the 1^{st} digit 1 from dividend 1300
\begin{array}{l}\phantom{800)}0\phantom{2}\\800\overline{)1300}\\\end{array}
Since 1 is less than 800, use the next digit 3 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{800)}0\phantom{3}\\800\overline{)1300}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1300
\begin{array}{l}\phantom{800)}00\phantom{4}\\800\overline{)1300}\\\end{array}
Since 13 is less than 800, use the next digit 0 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{800)}00\phantom{5}\\800\overline{)1300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1300
\begin{array}{l}\phantom{800)}000\phantom{6}\\800\overline{)1300}\\\end{array}
Since 130 is less than 800, use the next digit 0 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{800)}000\phantom{7}\\800\overline{)1300}\\\end{array}
Use the 4^{th} digit 0 from dividend 1300
\begin{array}{l}\phantom{800)}0001\phantom{8}\\800\overline{)1300}\\\phantom{800)}\underline{\phantom{9}800\phantom{}}\\\phantom{800)9}500\\\end{array}
Find closest multiple of 800 to 1300. We see that 1 \times 800 = 800 is the nearest. Now subtract 800 from 1300 to get reminder 500. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }500
Since 500 is less than 800, stop the division. The reminder is 500. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}