Evaluate
\frac{26}{5}=5.2
Factor
\frac{2 \cdot 13}{5} = 5\frac{1}{5} = 5.2
Share
Copied to clipboard
\begin{array}{l}\phantom{250)}\phantom{1}\\250\overline{)1300}\\\end{array}
Use the 1^{st} digit 1 from dividend 1300
\begin{array}{l}\phantom{250)}0\phantom{2}\\250\overline{)1300}\\\end{array}
Since 1 is less than 250, use the next digit 3 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{250)}0\phantom{3}\\250\overline{)1300}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1300
\begin{array}{l}\phantom{250)}00\phantom{4}\\250\overline{)1300}\\\end{array}
Since 13 is less than 250, use the next digit 0 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{250)}00\phantom{5}\\250\overline{)1300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1300
\begin{array}{l}\phantom{250)}000\phantom{6}\\250\overline{)1300}\\\end{array}
Since 130 is less than 250, use the next digit 0 from dividend 1300 and add 0 to the quotient
\begin{array}{l}\phantom{250)}000\phantom{7}\\250\overline{)1300}\\\end{array}
Use the 4^{th} digit 0 from dividend 1300
\begin{array}{l}\phantom{250)}0005\phantom{8}\\250\overline{)1300}\\\phantom{250)}\underline{\phantom{}1250\phantom{}}\\\phantom{250)99}50\\\end{array}
Find closest multiple of 250 to 1300. We see that 5 \times 250 = 1250 is the nearest. Now subtract 1250 from 1300 to get reminder 50. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }50
Since 50 is less than 250, stop the division. The reminder is 50. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}