Solve for x
x=25
x=60
Graph
Share
Copied to clipboard
85x-200-x^{2}=1300
Swap sides so that all variable terms are on the left hand side.
85x-200-x^{2}-1300=0
Subtract 1300 from both sides.
85x-1500-x^{2}=0
Subtract 1300 from -200 to get -1500.
-x^{2}+85x-1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-85±\sqrt{85^{2}-4\left(-1\right)\left(-1500\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 85 for b, and -1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-85±\sqrt{7225-4\left(-1\right)\left(-1500\right)}}{2\left(-1\right)}
Square 85.
x=\frac{-85±\sqrt{7225+4\left(-1500\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-85±\sqrt{7225-6000}}{2\left(-1\right)}
Multiply 4 times -1500.
x=\frac{-85±\sqrt{1225}}{2\left(-1\right)}
Add 7225 to -6000.
x=\frac{-85±35}{2\left(-1\right)}
Take the square root of 1225.
x=\frac{-85±35}{-2}
Multiply 2 times -1.
x=-\frac{50}{-2}
Now solve the equation x=\frac{-85±35}{-2} when ± is plus. Add -85 to 35.
x=25
Divide -50 by -2.
x=-\frac{120}{-2}
Now solve the equation x=\frac{-85±35}{-2} when ± is minus. Subtract 35 from -85.
x=60
Divide -120 by -2.
x=25 x=60
The equation is now solved.
85x-200-x^{2}=1300
Swap sides so that all variable terms are on the left hand side.
85x-x^{2}=1300+200
Add 200 to both sides.
85x-x^{2}=1500
Add 1300 and 200 to get 1500.
-x^{2}+85x=1500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+85x}{-1}=\frac{1500}{-1}
Divide both sides by -1.
x^{2}+\frac{85}{-1}x=\frac{1500}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-85x=\frac{1500}{-1}
Divide 85 by -1.
x^{2}-85x=-1500
Divide 1500 by -1.
x^{2}-85x+\left(-\frac{85}{2}\right)^{2}=-1500+\left(-\frac{85}{2}\right)^{2}
Divide -85, the coefficient of the x term, by 2 to get -\frac{85}{2}. Then add the square of -\frac{85}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-85x+\frac{7225}{4}=-1500+\frac{7225}{4}
Square -\frac{85}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-85x+\frac{7225}{4}=\frac{1225}{4}
Add -1500 to \frac{7225}{4}.
\left(x-\frac{85}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}-85x+\frac{7225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x-\frac{85}{2}=\frac{35}{2} x-\frac{85}{2}=-\frac{35}{2}
Simplify.
x=60 x=25
Add \frac{85}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}