Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

130t^{2}+180t+50=108
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
130t^{2}+180t+50-108=108-108
Subtract 108 from both sides of the equation.
130t^{2}+180t+50-108=0
Subtracting 108 from itself leaves 0.
130t^{2}+180t-58=0
Subtract 108 from 50.
t=\frac{-180±\sqrt{180^{2}-4\times 130\left(-58\right)}}{2\times 130}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 130 for a, 180 for b, and -58 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-180±\sqrt{32400-4\times 130\left(-58\right)}}{2\times 130}
Square 180.
t=\frac{-180±\sqrt{32400-520\left(-58\right)}}{2\times 130}
Multiply -4 times 130.
t=\frac{-180±\sqrt{32400+30160}}{2\times 130}
Multiply -520 times -58.
t=\frac{-180±\sqrt{62560}}{2\times 130}
Add 32400 to 30160.
t=\frac{-180±4\sqrt{3910}}{2\times 130}
Take the square root of 62560.
t=\frac{-180±4\sqrt{3910}}{260}
Multiply 2 times 130.
t=\frac{4\sqrt{3910}-180}{260}
Now solve the equation t=\frac{-180±4\sqrt{3910}}{260} when ± is plus. Add -180 to 4\sqrt{3910}.
t=\frac{\sqrt{3910}}{65}-\frac{9}{13}
Divide -180+4\sqrt{3910} by 260.
t=\frac{-4\sqrt{3910}-180}{260}
Now solve the equation t=\frac{-180±4\sqrt{3910}}{260} when ± is minus. Subtract 4\sqrt{3910} from -180.
t=-\frac{\sqrt{3910}}{65}-\frac{9}{13}
Divide -180-4\sqrt{3910} by 260.
t=\frac{\sqrt{3910}}{65}-\frac{9}{13} t=-\frac{\sqrt{3910}}{65}-\frac{9}{13}
The equation is now solved.
130t^{2}+180t+50=108
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
130t^{2}+180t+50-50=108-50
Subtract 50 from both sides of the equation.
130t^{2}+180t=108-50
Subtracting 50 from itself leaves 0.
130t^{2}+180t=58
Subtract 50 from 108.
\frac{130t^{2}+180t}{130}=\frac{58}{130}
Divide both sides by 130.
t^{2}+\frac{180}{130}t=\frac{58}{130}
Dividing by 130 undoes the multiplication by 130.
t^{2}+\frac{18}{13}t=\frac{58}{130}
Reduce the fraction \frac{180}{130} to lowest terms by extracting and canceling out 10.
t^{2}+\frac{18}{13}t=\frac{29}{65}
Reduce the fraction \frac{58}{130} to lowest terms by extracting and canceling out 2.
t^{2}+\frac{18}{13}t+\left(\frac{9}{13}\right)^{2}=\frac{29}{65}+\left(\frac{9}{13}\right)^{2}
Divide \frac{18}{13}, the coefficient of the x term, by 2 to get \frac{9}{13}. Then add the square of \frac{9}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{18}{13}t+\frac{81}{169}=\frac{29}{65}+\frac{81}{169}
Square \frac{9}{13} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{18}{13}t+\frac{81}{169}=\frac{782}{845}
Add \frac{29}{65} to \frac{81}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{9}{13}\right)^{2}=\frac{782}{845}
Factor t^{2}+\frac{18}{13}t+\frac{81}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{9}{13}\right)^{2}}=\sqrt{\frac{782}{845}}
Take the square root of both sides of the equation.
t+\frac{9}{13}=\frac{\sqrt{3910}}{65} t+\frac{9}{13}=-\frac{\sqrt{3910}}{65}
Simplify.
t=\frac{\sqrt{3910}}{65}-\frac{9}{13} t=-\frac{\sqrt{3910}}{65}-\frac{9}{13}
Subtract \frac{9}{13} from both sides of the equation.