Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{hx}{130s}\text{, }&h\neq 0\text{ and }s\neq 0\\k\in \mathrm{C}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{130ks}{x}\text{, }&s\neq 0\text{ and }k\neq 0\text{ and }x\neq 0\\h\neq 0\text{, }&\left(m=0\text{ and }s\neq 0\right)\text{ or }\left(x=0\text{ and }k=0\text{ and }s\neq 0\right)\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{hx}{130s}\text{, }&h\neq 0\text{ and }s\neq 0\\k\in \mathrm{R}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
s\times 130km=hxm
Multiply both sides of the equation by hs, the least common multiple of h,s.
130kms=hmx
Reorder the terms.
130msk=hmx
The equation is in standard form.
\frac{130msk}{130ms}=\frac{hmx}{130ms}
Divide both sides by 130ms.
k=\frac{hmx}{130ms}
Dividing by 130ms undoes the multiplication by 130ms.
k=\frac{hx}{130s}
Divide hmx by 130ms.
s\times 130km=hxm
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by hs, the least common multiple of h,s.
hxm=s\times 130km
Swap sides so that all variable terms are on the left hand side.
mxh=130kms
The equation is in standard form.
\frac{mxh}{mx}=\frac{130kms}{mx}
Divide both sides by xm.
h=\frac{130kms}{mx}
Dividing by xm undoes the multiplication by xm.
h=\frac{130ks}{x}
Divide 130skm by xm.
h=\frac{130ks}{x}\text{, }h\neq 0
Variable h cannot be equal to 0.
s\times 130km=hxm
Multiply both sides of the equation by hs, the least common multiple of h,s.
130kms=hmx
Reorder the terms.
130msk=hmx
The equation is in standard form.
\frac{130msk}{130ms}=\frac{hmx}{130ms}
Divide both sides by 130ms.
k=\frac{hmx}{130ms}
Dividing by 130ms undoes the multiplication by 130ms.
k=\frac{hx}{130s}
Divide hmx by 130ms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}