Solve for x
x=2
x = \frac{28}{13} = 2\frac{2}{13} \approx 2.153846154
Graph
Share
Copied to clipboard
130x^{2}-540x+560=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-540\right)±\sqrt{\left(-540\right)^{2}-4\times 130\times 560}}{2\times 130}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 130 for a, -540 for b, and 560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-540\right)±\sqrt{291600-4\times 130\times 560}}{2\times 130}
Square -540.
x=\frac{-\left(-540\right)±\sqrt{291600-520\times 560}}{2\times 130}
Multiply -4 times 130.
x=\frac{-\left(-540\right)±\sqrt{291600-291200}}{2\times 130}
Multiply -520 times 560.
x=\frac{-\left(-540\right)±\sqrt{400}}{2\times 130}
Add 291600 to -291200.
x=\frac{-\left(-540\right)±20}{2\times 130}
Take the square root of 400.
x=\frac{540±20}{2\times 130}
The opposite of -540 is 540.
x=\frac{540±20}{260}
Multiply 2 times 130.
x=\frac{560}{260}
Now solve the equation x=\frac{540±20}{260} when ± is plus. Add 540 to 20.
x=\frac{28}{13}
Reduce the fraction \frac{560}{260} to lowest terms by extracting and canceling out 20.
x=\frac{520}{260}
Now solve the equation x=\frac{540±20}{260} when ± is minus. Subtract 20 from 540.
x=2
Divide 520 by 260.
x=\frac{28}{13} x=2
The equation is now solved.
130x^{2}-540x+560=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
130x^{2}-540x+560-560=-560
Subtract 560 from both sides of the equation.
130x^{2}-540x=-560
Subtracting 560 from itself leaves 0.
\frac{130x^{2}-540x}{130}=-\frac{560}{130}
Divide both sides by 130.
x^{2}+\left(-\frac{540}{130}\right)x=-\frac{560}{130}
Dividing by 130 undoes the multiplication by 130.
x^{2}-\frac{54}{13}x=-\frac{560}{130}
Reduce the fraction \frac{-540}{130} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{54}{13}x=-\frac{56}{13}
Reduce the fraction \frac{-560}{130} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{54}{13}x+\left(-\frac{27}{13}\right)^{2}=-\frac{56}{13}+\left(-\frac{27}{13}\right)^{2}
Divide -\frac{54}{13}, the coefficient of the x term, by 2 to get -\frac{27}{13}. Then add the square of -\frac{27}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{54}{13}x+\frac{729}{169}=-\frac{56}{13}+\frac{729}{169}
Square -\frac{27}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{54}{13}x+\frac{729}{169}=\frac{1}{169}
Add -\frac{56}{13} to \frac{729}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{27}{13}\right)^{2}=\frac{1}{169}
Factor x^{2}-\frac{54}{13}x+\frac{729}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{13}\right)^{2}}=\sqrt{\frac{1}{169}}
Take the square root of both sides of the equation.
x-\frac{27}{13}=\frac{1}{13} x-\frac{27}{13}=-\frac{1}{13}
Simplify.
x=\frac{28}{13} x=2
Add \frac{27}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}