Solve for x
x=3
Graph
Share
Copied to clipboard
13+x=\frac{1}{3}\times 45+\frac{1}{3}x
Use the distributive property to multiply \frac{1}{3} by 45+x.
13+x=\frac{45}{3}+\frac{1}{3}x
Multiply \frac{1}{3} and 45 to get \frac{45}{3}.
13+x=15+\frac{1}{3}x
Divide 45 by 3 to get 15.
13+x-\frac{1}{3}x=15
Subtract \frac{1}{3}x from both sides.
13+\frac{2}{3}x=15
Combine x and -\frac{1}{3}x to get \frac{2}{3}x.
\frac{2}{3}x=15-13
Subtract 13 from both sides.
\frac{2}{3}x=2
Subtract 13 from 15 to get 2.
x=2\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
x=3
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}