Factor
\left(3x-2\right)\left(x+5\right)
Evaluate
\left(3x-2\right)\left(x+5\right)
Graph
Share
Copied to clipboard
3x^{2}+13x-10
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=3\left(-10\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
-1,30 -2,15 -3,10 -5,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Calculate the sum for each pair.
a=-2 b=15
The solution is the pair that gives sum 13.
\left(3x^{2}-2x\right)+\left(15x-10\right)
Rewrite 3x^{2}+13x-10 as \left(3x^{2}-2x\right)+\left(15x-10\right).
x\left(3x-2\right)+5\left(3x-2\right)
Factor out x in the first and 5 in the second group.
\left(3x-2\right)\left(x+5\right)
Factor out common term 3x-2 by using distributive property.
3x^{2}+13x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\times 3\left(-10\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\times 3\left(-10\right)}}{2\times 3}
Square 13.
x=\frac{-13±\sqrt{169-12\left(-10\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-13±\sqrt{169+120}}{2\times 3}
Multiply -12 times -10.
x=\frac{-13±\sqrt{289}}{2\times 3}
Add 169 to 120.
x=\frac{-13±17}{2\times 3}
Take the square root of 289.
x=\frac{-13±17}{6}
Multiply 2 times 3.
x=\frac{4}{6}
Now solve the equation x=\frac{-13±17}{6} when ± is plus. Add -13 to 17.
x=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{6}
Now solve the equation x=\frac{-13±17}{6} when ± is minus. Subtract 17 from -13.
x=-5
Divide -30 by 6.
3x^{2}+13x-10=3\left(x-\frac{2}{3}\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -5 for x_{2}.
3x^{2}+13x-10=3\left(x-\frac{2}{3}\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3x^{2}+13x-10=3\times \frac{3x-2}{3}\left(x+5\right)
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
3x^{2}+13x-10=\left(3x-2\right)\left(x+5\right)
Cancel out 3, the greatest common factor in 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}