Solve for x
x=\frac{\sqrt{105}+1}{26}\approx 0.432575029
x=\frac{1-\sqrt{105}}{26}\approx -0.355651953
Graph
Share
Copied to clipboard
13x^{2}-x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
13x^{2}-x-2=2-2
Subtract 2 from both sides of the equation.
13x^{2}-x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 13\left(-2\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-52\left(-2\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-1\right)±\sqrt{1+104}}{2\times 13}
Multiply -52 times -2.
x=\frac{-\left(-1\right)±\sqrt{105}}{2\times 13}
Add 1 to 104.
x=\frac{1±\sqrt{105}}{2\times 13}
The opposite of -1 is 1.
x=\frac{1±\sqrt{105}}{26}
Multiply 2 times 13.
x=\frac{\sqrt{105}+1}{26}
Now solve the equation x=\frac{1±\sqrt{105}}{26} when ± is plus. Add 1 to \sqrt{105}.
x=\frac{1-\sqrt{105}}{26}
Now solve the equation x=\frac{1±\sqrt{105}}{26} when ± is minus. Subtract \sqrt{105} from 1.
x=\frac{\sqrt{105}+1}{26} x=\frac{1-\sqrt{105}}{26}
The equation is now solved.
13x^{2}-x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{13x^{2}-x}{13}=\frac{2}{13}
Divide both sides by 13.
x^{2}-\frac{1}{13}x=\frac{2}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{1}{13}x+\left(-\frac{1}{26}\right)^{2}=\frac{2}{13}+\left(-\frac{1}{26}\right)^{2}
Divide -\frac{1}{13}, the coefficient of the x term, by 2 to get -\frac{1}{26}. Then add the square of -\frac{1}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{13}x+\frac{1}{676}=\frac{2}{13}+\frac{1}{676}
Square -\frac{1}{26} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{13}x+\frac{1}{676}=\frac{105}{676}
Add \frac{2}{13} to \frac{1}{676} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{26}\right)^{2}=\frac{105}{676}
Factor x^{2}-\frac{1}{13}x+\frac{1}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{26}\right)^{2}}=\sqrt{\frac{105}{676}}
Take the square root of both sides of the equation.
x-\frac{1}{26}=\frac{\sqrt{105}}{26} x-\frac{1}{26}=-\frac{\sqrt{105}}{26}
Simplify.
x=\frac{\sqrt{105}+1}{26} x=\frac{1-\sqrt{105}}{26}
Add \frac{1}{26} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}