Solve for x
x = \frac{\sqrt{1065} + 5}{26} \approx 1.447474529
x=\frac{5-\sqrt{1065}}{26}\approx -1.062859144
Graph
Share
Copied to clipboard
13x^{2}-5x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 13\left(-20\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -5 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 13\left(-20\right)}}{2\times 13}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-52\left(-20\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-5\right)±\sqrt{25+1040}}{2\times 13}
Multiply -52 times -20.
x=\frac{-\left(-5\right)±\sqrt{1065}}{2\times 13}
Add 25 to 1040.
x=\frac{5±\sqrt{1065}}{2\times 13}
The opposite of -5 is 5.
x=\frac{5±\sqrt{1065}}{26}
Multiply 2 times 13.
x=\frac{\sqrt{1065}+5}{26}
Now solve the equation x=\frac{5±\sqrt{1065}}{26} when ± is plus. Add 5 to \sqrt{1065}.
x=\frac{5-\sqrt{1065}}{26}
Now solve the equation x=\frac{5±\sqrt{1065}}{26} when ± is minus. Subtract \sqrt{1065} from 5.
x=\frac{\sqrt{1065}+5}{26} x=\frac{5-\sqrt{1065}}{26}
The equation is now solved.
13x^{2}-5x-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}-5x-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
13x^{2}-5x=-\left(-20\right)
Subtracting -20 from itself leaves 0.
13x^{2}-5x=20
Subtract -20 from 0.
\frac{13x^{2}-5x}{13}=\frac{20}{13}
Divide both sides by 13.
x^{2}-\frac{5}{13}x=\frac{20}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{5}{13}x+\left(-\frac{5}{26}\right)^{2}=\frac{20}{13}+\left(-\frac{5}{26}\right)^{2}
Divide -\frac{5}{13}, the coefficient of the x term, by 2 to get -\frac{5}{26}. Then add the square of -\frac{5}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{13}x+\frac{25}{676}=\frac{20}{13}+\frac{25}{676}
Square -\frac{5}{26} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{13}x+\frac{25}{676}=\frac{1065}{676}
Add \frac{20}{13} to \frac{25}{676} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{26}\right)^{2}=\frac{1065}{676}
Factor x^{2}-\frac{5}{13}x+\frac{25}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{26}\right)^{2}}=\sqrt{\frac{1065}{676}}
Take the square root of both sides of the equation.
x-\frac{5}{26}=\frac{\sqrt{1065}}{26} x-\frac{5}{26}=-\frac{\sqrt{1065}}{26}
Simplify.
x=\frac{\sqrt{1065}+5}{26} x=\frac{5-\sqrt{1065}}{26}
Add \frac{5}{26} to both sides of the equation.
x ^ 2 -\frac{5}{13}x -\frac{20}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = \frac{5}{13} rs = -\frac{20}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{26} - u s = \frac{5}{26} + u
Two numbers r and s sum up to \frac{5}{13} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{13} = \frac{5}{26}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{26} - u) (\frac{5}{26} + u) = -\frac{20}{13}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{20}{13}
\frac{25}{676} - u^2 = -\frac{20}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{20}{13}-\frac{25}{676} = -\frac{1065}{676}
Simplify the expression by subtracting \frac{25}{676} on both sides
u^2 = \frac{1065}{676} u = \pm\sqrt{\frac{1065}{676}} = \pm \frac{\sqrt{1065}}{26}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{26} - \frac{\sqrt{1065}}{26} = -1.063 s = \frac{5}{26} + \frac{\sqrt{1065}}{26} = 1.447
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}