Solve for x
x=6
x = \frac{40}{13} = 3\frac{1}{13} \approx 3.076923077
Graph
Share
Copied to clipboard
13x^{2}-118x+240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-118\right)±\sqrt{\left(-118\right)^{2}-4\times 13\times 240}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -118 for b, and 240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-118\right)±\sqrt{13924-4\times 13\times 240}}{2\times 13}
Square -118.
x=\frac{-\left(-118\right)±\sqrt{13924-52\times 240}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-118\right)±\sqrt{13924-12480}}{2\times 13}
Multiply -52 times 240.
x=\frac{-\left(-118\right)±\sqrt{1444}}{2\times 13}
Add 13924 to -12480.
x=\frac{-\left(-118\right)±38}{2\times 13}
Take the square root of 1444.
x=\frac{118±38}{2\times 13}
The opposite of -118 is 118.
x=\frac{118±38}{26}
Multiply 2 times 13.
x=\frac{156}{26}
Now solve the equation x=\frac{118±38}{26} when ± is plus. Add 118 to 38.
x=6
Divide 156 by 26.
x=\frac{80}{26}
Now solve the equation x=\frac{118±38}{26} when ± is minus. Subtract 38 from 118.
x=\frac{40}{13}
Reduce the fraction \frac{80}{26} to lowest terms by extracting and canceling out 2.
x=6 x=\frac{40}{13}
The equation is now solved.
13x^{2}-118x+240=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}-118x+240-240=-240
Subtract 240 from both sides of the equation.
13x^{2}-118x=-240
Subtracting 240 from itself leaves 0.
\frac{13x^{2}-118x}{13}=-\frac{240}{13}
Divide both sides by 13.
x^{2}-\frac{118}{13}x=-\frac{240}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{118}{13}x+\left(-\frac{59}{13}\right)^{2}=-\frac{240}{13}+\left(-\frac{59}{13}\right)^{2}
Divide -\frac{118}{13}, the coefficient of the x term, by 2 to get -\frac{59}{13}. Then add the square of -\frac{59}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{118}{13}x+\frac{3481}{169}=-\frac{240}{13}+\frac{3481}{169}
Square -\frac{59}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{118}{13}x+\frac{3481}{169}=\frac{361}{169}
Add -\frac{240}{13} to \frac{3481}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{13}\right)^{2}=\frac{361}{169}
Factor x^{2}-\frac{118}{13}x+\frac{3481}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{13}\right)^{2}}=\sqrt{\frac{361}{169}}
Take the square root of both sides of the equation.
x-\frac{59}{13}=\frac{19}{13} x-\frac{59}{13}=-\frac{19}{13}
Simplify.
x=6 x=\frac{40}{13}
Add \frac{59}{13} to both sides of the equation.
x ^ 2 -\frac{118}{13}x +\frac{240}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = \frac{118}{13} rs = \frac{240}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{59}{13} - u s = \frac{59}{13} + u
Two numbers r and s sum up to \frac{118}{13} exactly when the average of the two numbers is \frac{1}{2}*\frac{118}{13} = \frac{59}{13}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{59}{13} - u) (\frac{59}{13} + u) = \frac{240}{13}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{240}{13}
\frac{3481}{169} - u^2 = \frac{240}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{240}{13}-\frac{3481}{169} = -\frac{361}{169}
Simplify the expression by subtracting \frac{3481}{169} on both sides
u^2 = \frac{361}{169} u = \pm\sqrt{\frac{361}{169}} = \pm \frac{19}{13}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{59}{13} - \frac{19}{13} = 3.077 s = \frac{59}{13} + \frac{19}{13} = 6.000
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}