Solve for x
x = \frac{\sqrt{14810} - 30}{13} \approx 7.053564878
x=\frac{-\sqrt{14810}-30}{13}\approx -11.668949493
Graph
Share
Copied to clipboard
13x^{2}+60x=1070
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
13x^{2}+60x-1070=1070-1070
Subtract 1070 from both sides of the equation.
13x^{2}+60x-1070=0
Subtracting 1070 from itself leaves 0.
x=\frac{-60±\sqrt{60^{2}-4\times 13\left(-1070\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, 60 for b, and -1070 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 13\left(-1070\right)}}{2\times 13}
Square 60.
x=\frac{-60±\sqrt{3600-52\left(-1070\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-60±\sqrt{3600+55640}}{2\times 13}
Multiply -52 times -1070.
x=\frac{-60±\sqrt{59240}}{2\times 13}
Add 3600 to 55640.
x=\frac{-60±2\sqrt{14810}}{2\times 13}
Take the square root of 59240.
x=\frac{-60±2\sqrt{14810}}{26}
Multiply 2 times 13.
x=\frac{2\sqrt{14810}-60}{26}
Now solve the equation x=\frac{-60±2\sqrt{14810}}{26} when ± is plus. Add -60 to 2\sqrt{14810}.
x=\frac{\sqrt{14810}-30}{13}
Divide -60+2\sqrt{14810} by 26.
x=\frac{-2\sqrt{14810}-60}{26}
Now solve the equation x=\frac{-60±2\sqrt{14810}}{26} when ± is minus. Subtract 2\sqrt{14810} from -60.
x=\frac{-\sqrt{14810}-30}{13}
Divide -60-2\sqrt{14810} by 26.
x=\frac{\sqrt{14810}-30}{13} x=\frac{-\sqrt{14810}-30}{13}
The equation is now solved.
13x^{2}+60x=1070
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{13x^{2}+60x}{13}=\frac{1070}{13}
Divide both sides by 13.
x^{2}+\frac{60}{13}x=\frac{1070}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}+\frac{60}{13}x+\left(\frac{30}{13}\right)^{2}=\frac{1070}{13}+\left(\frac{30}{13}\right)^{2}
Divide \frac{60}{13}, the coefficient of the x term, by 2 to get \frac{30}{13}. Then add the square of \frac{30}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{60}{13}x+\frac{900}{169}=\frac{1070}{13}+\frac{900}{169}
Square \frac{30}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{60}{13}x+\frac{900}{169}=\frac{14810}{169}
Add \frac{1070}{13} to \frac{900}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{30}{13}\right)^{2}=\frac{14810}{169}
Factor x^{2}+\frac{60}{13}x+\frac{900}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{30}{13}\right)^{2}}=\sqrt{\frac{14810}{169}}
Take the square root of both sides of the equation.
x+\frac{30}{13}=\frac{\sqrt{14810}}{13} x+\frac{30}{13}=-\frac{\sqrt{14810}}{13}
Simplify.
x=\frac{\sqrt{14810}-30}{13} x=\frac{-\sqrt{14810}-30}{13}
Subtract \frac{30}{13} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}