Solve for x
x = -\frac{63}{26} = -2\frac{11}{26} \approx -2.423076923
x=1.5
Graph
Share
Copied to clipboard
13x^{2}+12x+9=56.25
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
13x^{2}+12x+9-56.25=56.25-56.25
Subtract 56.25 from both sides of the equation.
13x^{2}+12x+9-56.25=0
Subtracting 56.25 from itself leaves 0.
13x^{2}+12x-47.25=0
Subtract 56.25 from 9.
x=\frac{-12±\sqrt{12^{2}-4\times 13\left(-47.25\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, 12 for b, and -47.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 13\left(-47.25\right)}}{2\times 13}
Square 12.
x=\frac{-12±\sqrt{144-52\left(-47.25\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-12±\sqrt{144+2457}}{2\times 13}
Multiply -52 times -47.25.
x=\frac{-12±\sqrt{2601}}{2\times 13}
Add 144 to 2457.
x=\frac{-12±51}{2\times 13}
Take the square root of 2601.
x=\frac{-12±51}{26}
Multiply 2 times 13.
x=\frac{39}{26}
Now solve the equation x=\frac{-12±51}{26} when ± is plus. Add -12 to 51.
x=\frac{3}{2}
Reduce the fraction \frac{39}{26} to lowest terms by extracting and canceling out 13.
x=-\frac{63}{26}
Now solve the equation x=\frac{-12±51}{26} when ± is minus. Subtract 51 from -12.
x=\frac{3}{2} x=-\frac{63}{26}
The equation is now solved.
13x^{2}+12x+9=56.25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}+12x+9-9=56.25-9
Subtract 9 from both sides of the equation.
13x^{2}+12x=56.25-9
Subtracting 9 from itself leaves 0.
13x^{2}+12x=47.25
Subtract 9 from 56.25.
\frac{13x^{2}+12x}{13}=\frac{47.25}{13}
Divide both sides by 13.
x^{2}+\frac{12}{13}x=\frac{47.25}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}+\frac{12}{13}x=\frac{189}{52}
Divide 47.25 by 13.
x^{2}+\frac{12}{13}x+\left(\frac{6}{13}\right)^{2}=\frac{189}{52}+\left(\frac{6}{13}\right)^{2}
Divide \frac{12}{13}, the coefficient of the x term, by 2 to get \frac{6}{13}. Then add the square of \frac{6}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{13}x+\frac{36}{169}=\frac{189}{52}+\frac{36}{169}
Square \frac{6}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{13}x+\frac{36}{169}=\frac{2601}{676}
Add \frac{189}{52} to \frac{36}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{13}\right)^{2}=\frac{2601}{676}
Factor x^{2}+\frac{12}{13}x+\frac{36}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{13}\right)^{2}}=\sqrt{\frac{2601}{676}}
Take the square root of both sides of the equation.
x+\frac{6}{13}=\frac{51}{26} x+\frac{6}{13}=-\frac{51}{26}
Simplify.
x=\frac{3}{2} x=-\frac{63}{26}
Subtract \frac{6}{13} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}