Solve for x
x=\frac{19\sqrt{5}-49}{4}\approx -1.628677107
x=\frac{-19\sqrt{5}-49}{4}\approx -22.871322893
Graph
Share
Copied to clipboard
13x+1-\left(2x\right)^{2}=61x+50\left(x+3\right)
Consider \left(1+2x\right)\left(1-2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
13x+1-2^{2}x^{2}=61x+50\left(x+3\right)
Expand \left(2x\right)^{2}.
13x+1-4x^{2}=61x+50\left(x+3\right)
Calculate 2 to the power of 2 and get 4.
13x+1-4x^{2}=61x+50x+150
Use the distributive property to multiply 50 by x+3.
13x+1-4x^{2}=111x+150
Combine 61x and 50x to get 111x.
13x+1-4x^{2}-111x=150
Subtract 111x from both sides.
-98x+1-4x^{2}=150
Combine 13x and -111x to get -98x.
-98x+1-4x^{2}-150=0
Subtract 150 from both sides.
-98x-149-4x^{2}=0
Subtract 150 from 1 to get -149.
-4x^{2}-98x-149=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-98\right)±\sqrt{\left(-98\right)^{2}-4\left(-4\right)\left(-149\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -98 for b, and -149 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-98\right)±\sqrt{9604-4\left(-4\right)\left(-149\right)}}{2\left(-4\right)}
Square -98.
x=\frac{-\left(-98\right)±\sqrt{9604+16\left(-149\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-98\right)±\sqrt{9604-2384}}{2\left(-4\right)}
Multiply 16 times -149.
x=\frac{-\left(-98\right)±\sqrt{7220}}{2\left(-4\right)}
Add 9604 to -2384.
x=\frac{-\left(-98\right)±38\sqrt{5}}{2\left(-4\right)}
Take the square root of 7220.
x=\frac{98±38\sqrt{5}}{2\left(-4\right)}
The opposite of -98 is 98.
x=\frac{98±38\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{38\sqrt{5}+98}{-8}
Now solve the equation x=\frac{98±38\sqrt{5}}{-8} when ± is plus. Add 98 to 38\sqrt{5}.
x=\frac{-19\sqrt{5}-49}{4}
Divide 98+38\sqrt{5} by -8.
x=\frac{98-38\sqrt{5}}{-8}
Now solve the equation x=\frac{98±38\sqrt{5}}{-8} when ± is minus. Subtract 38\sqrt{5} from 98.
x=\frac{19\sqrt{5}-49}{4}
Divide 98-38\sqrt{5} by -8.
x=\frac{-19\sqrt{5}-49}{4} x=\frac{19\sqrt{5}-49}{4}
The equation is now solved.
13x+1-\left(2x\right)^{2}=61x+50\left(x+3\right)
Consider \left(1+2x\right)\left(1-2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
13x+1-2^{2}x^{2}=61x+50\left(x+3\right)
Expand \left(2x\right)^{2}.
13x+1-4x^{2}=61x+50\left(x+3\right)
Calculate 2 to the power of 2 and get 4.
13x+1-4x^{2}=61x+50x+150
Use the distributive property to multiply 50 by x+3.
13x+1-4x^{2}=111x+150
Combine 61x and 50x to get 111x.
13x+1-4x^{2}-111x=150
Subtract 111x from both sides.
-98x+1-4x^{2}=150
Combine 13x and -111x to get -98x.
-98x-4x^{2}=150-1
Subtract 1 from both sides.
-98x-4x^{2}=149
Subtract 1 from 150 to get 149.
-4x^{2}-98x=149
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}-98x}{-4}=\frac{149}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{98}{-4}\right)x=\frac{149}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{49}{2}x=\frac{149}{-4}
Reduce the fraction \frac{-98}{-4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{49}{2}x=-\frac{149}{4}
Divide 149 by -4.
x^{2}+\frac{49}{2}x+\left(\frac{49}{4}\right)^{2}=-\frac{149}{4}+\left(\frac{49}{4}\right)^{2}
Divide \frac{49}{2}, the coefficient of the x term, by 2 to get \frac{49}{4}. Then add the square of \frac{49}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{49}{2}x+\frac{2401}{16}=-\frac{149}{4}+\frac{2401}{16}
Square \frac{49}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{49}{2}x+\frac{2401}{16}=\frac{1805}{16}
Add -\frac{149}{4} to \frac{2401}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{49}{4}\right)^{2}=\frac{1805}{16}
Factor x^{2}+\frac{49}{2}x+\frac{2401}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{4}\right)^{2}}=\sqrt{\frac{1805}{16}}
Take the square root of both sides of the equation.
x+\frac{49}{4}=\frac{19\sqrt{5}}{4} x+\frac{49}{4}=-\frac{19\sqrt{5}}{4}
Simplify.
x=\frac{19\sqrt{5}-49}{4} x=\frac{-19\sqrt{5}-49}{4}
Subtract \frac{49}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}