Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

13t^{2}+69t-602=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-69±\sqrt{69^{2}-4\times 13\left(-602\right)}}{2\times 13}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-69±\sqrt{4761-4\times 13\left(-602\right)}}{2\times 13}
Square 69.
t=\frac{-69±\sqrt{4761-52\left(-602\right)}}{2\times 13}
Multiply -4 times 13.
t=\frac{-69±\sqrt{4761+31304}}{2\times 13}
Multiply -52 times -602.
t=\frac{-69±\sqrt{36065}}{2\times 13}
Add 4761 to 31304.
t=\frac{-69±\sqrt{36065}}{26}
Multiply 2 times 13.
t=\frac{\sqrt{36065}-69}{26}
Now solve the equation t=\frac{-69±\sqrt{36065}}{26} when ± is plus. Add -69 to \sqrt{36065}.
t=\frac{-\sqrt{36065}-69}{26}
Now solve the equation t=\frac{-69±\sqrt{36065}}{26} when ± is minus. Subtract \sqrt{36065} from -69.
13t^{2}+69t-602=13\left(t-\frac{\sqrt{36065}-69}{26}\right)\left(t-\frac{-\sqrt{36065}-69}{26}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-69+\sqrt{36065}}{26} for x_{1} and \frac{-69-\sqrt{36065}}{26} for x_{2}.
x ^ 2 +\frac{69}{13}x -\frac{602}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = -\frac{69}{13} rs = -\frac{602}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{69}{26} - u s = -\frac{69}{26} + u
Two numbers r and s sum up to -\frac{69}{13} exactly when the average of the two numbers is \frac{1}{2}*-\frac{69}{13} = -\frac{69}{26}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{69}{26} - u) (-\frac{69}{26} + u) = -\frac{602}{13}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{602}{13}
\frac{4761}{676} - u^2 = -\frac{602}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{602}{13}-\frac{4761}{676} = -\frac{36065}{676}
Simplify the expression by subtracting \frac{4761}{676} on both sides
u^2 = \frac{36065}{676} u = \pm\sqrt{\frac{36065}{676}} = \pm \frac{\sqrt{36065}}{26}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{69}{26} - \frac{\sqrt{36065}}{26} = -9.958 s = -\frac{69}{26} + \frac{\sqrt{36065}}{26} = 4.650
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.