Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

13n^{2}-41n-1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 13\left(-1\right)}}{2\times 13}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 13 for a, -41 for b, and -1 for c in the quadratic formula.
n=\frac{41±\sqrt{1733}}{26}
Do the calculations.
n=\frac{\sqrt{1733}+41}{26} n=\frac{41-\sqrt{1733}}{26}
Solve the equation n=\frac{41±\sqrt{1733}}{26} when ± is plus and when ± is minus.
13\left(n-\frac{\sqrt{1733}+41}{26}\right)\left(n-\frac{41-\sqrt{1733}}{26}\right)>0
Rewrite the inequality by using the obtained solutions.
n-\frac{\sqrt{1733}+41}{26}<0 n-\frac{41-\sqrt{1733}}{26}<0
For the product to be positive, n-\frac{\sqrt{1733}+41}{26} and n-\frac{41-\sqrt{1733}}{26} have to be both negative or both positive. Consider the case when n-\frac{\sqrt{1733}+41}{26} and n-\frac{41-\sqrt{1733}}{26} are both negative.
n<\frac{41-\sqrt{1733}}{26}
The solution satisfying both inequalities is n<\frac{41-\sqrt{1733}}{26}.
n-\frac{41-\sqrt{1733}}{26}>0 n-\frac{\sqrt{1733}+41}{26}>0
Consider the case when n-\frac{\sqrt{1733}+41}{26} and n-\frac{41-\sqrt{1733}}{26} are both positive.
n>\frac{\sqrt{1733}+41}{26}
The solution satisfying both inequalities is n>\frac{\sqrt{1733}+41}{26}.
n<\frac{41-\sqrt{1733}}{26}\text{; }n>\frac{\sqrt{1733}+41}{26}
The final solution is the union of the obtained solutions.