Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

13m^{2}-11m-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 13\left(-3\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -11 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-11\right)±\sqrt{121-4\times 13\left(-3\right)}}{2\times 13}
Square -11.
m=\frac{-\left(-11\right)±\sqrt{121-52\left(-3\right)}}{2\times 13}
Multiply -4 times 13.
m=\frac{-\left(-11\right)±\sqrt{121+156}}{2\times 13}
Multiply -52 times -3.
m=\frac{-\left(-11\right)±\sqrt{277}}{2\times 13}
Add 121 to 156.
m=\frac{11±\sqrt{277}}{2\times 13}
The opposite of -11 is 11.
m=\frac{11±\sqrt{277}}{26}
Multiply 2 times 13.
m=\frac{\sqrt{277}+11}{26}
Now solve the equation m=\frac{11±\sqrt{277}}{26} when ± is plus. Add 11 to \sqrt{277}.
m=\frac{11-\sqrt{277}}{26}
Now solve the equation m=\frac{11±\sqrt{277}}{26} when ± is minus. Subtract \sqrt{277} from 11.
m=\frac{\sqrt{277}+11}{26} m=\frac{11-\sqrt{277}}{26}
The equation is now solved.
13m^{2}-11m-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13m^{2}-11m-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
13m^{2}-11m=-\left(-3\right)
Subtracting -3 from itself leaves 0.
13m^{2}-11m=3
Subtract -3 from 0.
\frac{13m^{2}-11m}{13}=\frac{3}{13}
Divide both sides by 13.
m^{2}-\frac{11}{13}m=\frac{3}{13}
Dividing by 13 undoes the multiplication by 13.
m^{2}-\frac{11}{13}m+\left(-\frac{11}{26}\right)^{2}=\frac{3}{13}+\left(-\frac{11}{26}\right)^{2}
Divide -\frac{11}{13}, the coefficient of the x term, by 2 to get -\frac{11}{26}. Then add the square of -\frac{11}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{11}{13}m+\frac{121}{676}=\frac{3}{13}+\frac{121}{676}
Square -\frac{11}{26} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{11}{13}m+\frac{121}{676}=\frac{277}{676}
Add \frac{3}{13} to \frac{121}{676} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{11}{26}\right)^{2}=\frac{277}{676}
Factor m^{2}-\frac{11}{13}m+\frac{121}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{11}{26}\right)^{2}}=\sqrt{\frac{277}{676}}
Take the square root of both sides of the equation.
m-\frac{11}{26}=\frac{\sqrt{277}}{26} m-\frac{11}{26}=-\frac{\sqrt{277}}{26}
Simplify.
m=\frac{\sqrt{277}+11}{26} m=\frac{11-\sqrt{277}}{26}
Add \frac{11}{26} to both sides of the equation.
x ^ 2 -\frac{11}{13}x -\frac{3}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = \frac{11}{13} rs = -\frac{3}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{11}{26} - u s = \frac{11}{26} + u
Two numbers r and s sum up to \frac{11}{13} exactly when the average of the two numbers is \frac{1}{2}*\frac{11}{13} = \frac{11}{26}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{11}{26} - u) (\frac{11}{26} + u) = -\frac{3}{13}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{13}
\frac{121}{676} - u^2 = -\frac{3}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{13}-\frac{121}{676} = -\frac{277}{676}
Simplify the expression by subtracting \frac{121}{676} on both sides
u^2 = \frac{277}{676} u = \pm\sqrt{\frac{277}{676}} = \pm \frac{\sqrt{277}}{26}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{11}{26} - \frac{\sqrt{277}}{26} = -0.217 s = \frac{11}{26} + \frac{\sqrt{277}}{26} = 1.063
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.