Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

m\left(13+15m\right)
Factor out m.
15m^{2}+13m=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-13±\sqrt{13^{2}}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-13±13}{2\times 15}
Take the square root of 13^{2}.
m=\frac{-13±13}{30}
Multiply 2 times 15.
m=\frac{0}{30}
Now solve the equation m=\frac{-13±13}{30} when ± is plus. Add -13 to 13.
m=0
Divide 0 by 30.
m=-\frac{26}{30}
Now solve the equation m=\frac{-13±13}{30} when ± is minus. Subtract 13 from -13.
m=-\frac{13}{15}
Reduce the fraction \frac{-26}{30} to lowest terms by extracting and canceling out 2.
15m^{2}+13m=15m\left(m-\left(-\frac{13}{15}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{13}{15} for x_{2}.
15m^{2}+13m=15m\left(m+\frac{13}{15}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15m^{2}+13m=15m\times \frac{15m+13}{15}
Add \frac{13}{15} to m by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15m^{2}+13m=m\left(15m+13\right)
Cancel out 15, the greatest common factor in 15 and 15.