Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

13d^{2}-73d-98=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-\left(-73\right)±\sqrt{\left(-73\right)^{2}-4\times 13\left(-98\right)}}{2\times 13}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-73\right)±\sqrt{5329-4\times 13\left(-98\right)}}{2\times 13}
Square -73.
d=\frac{-\left(-73\right)±\sqrt{5329-52\left(-98\right)}}{2\times 13}
Multiply -4 times 13.
d=\frac{-\left(-73\right)±\sqrt{5329+5096}}{2\times 13}
Multiply -52 times -98.
d=\frac{-\left(-73\right)±\sqrt{10425}}{2\times 13}
Add 5329 to 5096.
d=\frac{-\left(-73\right)±5\sqrt{417}}{2\times 13}
Take the square root of 10425.
d=\frac{73±5\sqrt{417}}{2\times 13}
The opposite of -73 is 73.
d=\frac{73±5\sqrt{417}}{26}
Multiply 2 times 13.
d=\frac{5\sqrt{417}+73}{26}
Now solve the equation d=\frac{73±5\sqrt{417}}{26} when ± is plus. Add 73 to 5\sqrt{417}.
d=\frac{73-5\sqrt{417}}{26}
Now solve the equation d=\frac{73±5\sqrt{417}}{26} when ± is minus. Subtract 5\sqrt{417} from 73.
13d^{2}-73d-98=13\left(d-\frac{5\sqrt{417}+73}{26}\right)\left(d-\frac{73-5\sqrt{417}}{26}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{73+5\sqrt{417}}{26} for x_{1} and \frac{73-5\sqrt{417}}{26} for x_{2}.
x ^ 2 -\frac{73}{13}x -\frac{98}{13} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 13
r + s = \frac{73}{13} rs = -\frac{98}{13}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{73}{26} - u s = \frac{73}{26} + u
Two numbers r and s sum up to \frac{73}{13} exactly when the average of the two numbers is \frac{1}{2}*\frac{73}{13} = \frac{73}{26}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{73}{26} - u) (\frac{73}{26} + u) = -\frac{98}{13}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{98}{13}
\frac{5329}{676} - u^2 = -\frac{98}{13}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{98}{13}-\frac{5329}{676} = -\frac{10425}{676}
Simplify the expression by subtracting \frac{5329}{676} on both sides
u^2 = \frac{10425}{676} u = \pm\sqrt{\frac{10425}{676}} = \pm \frac{\sqrt{10425}}{26}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{73}{26} - \frac{\sqrt{10425}}{26} = -1.119 s = \frac{73}{26} + \frac{\sqrt{10425}}{26} = 6.735
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.