Solve for x
x = \frac{10 \sqrt{51} + 180}{13} \approx 19.33956033
x = \frac{180 - 10 \sqrt{51}}{13} \approx 8.352747363
Graph
Share
Copied to clipboard
13x^{2}-360x+2100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\times 13\times 2100}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -360 for b, and 2100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-360\right)±\sqrt{129600-4\times 13\times 2100}}{2\times 13}
Square -360.
x=\frac{-\left(-360\right)±\sqrt{129600-52\times 2100}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-360\right)±\sqrt{129600-109200}}{2\times 13}
Multiply -52 times 2100.
x=\frac{-\left(-360\right)±\sqrt{20400}}{2\times 13}
Add 129600 to -109200.
x=\frac{-\left(-360\right)±20\sqrt{51}}{2\times 13}
Take the square root of 20400.
x=\frac{360±20\sqrt{51}}{2\times 13}
The opposite of -360 is 360.
x=\frac{360±20\sqrt{51}}{26}
Multiply 2 times 13.
x=\frac{20\sqrt{51}+360}{26}
Now solve the equation x=\frac{360±20\sqrt{51}}{26} when ± is plus. Add 360 to 20\sqrt{51}.
x=\frac{10\sqrt{51}+180}{13}
Divide 360+20\sqrt{51} by 26.
x=\frac{360-20\sqrt{51}}{26}
Now solve the equation x=\frac{360±20\sqrt{51}}{26} when ± is minus. Subtract 20\sqrt{51} from 360.
x=\frac{180-10\sqrt{51}}{13}
Divide 360-20\sqrt{51} by 26.
x=\frac{10\sqrt{51}+180}{13} x=\frac{180-10\sqrt{51}}{13}
The equation is now solved.
13x^{2}-360x+2100=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}-360x+2100-2100=-2100
Subtract 2100 from both sides of the equation.
13x^{2}-360x=-2100
Subtracting 2100 from itself leaves 0.
\frac{13x^{2}-360x}{13}=-\frac{2100}{13}
Divide both sides by 13.
x^{2}-\frac{360}{13}x=-\frac{2100}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{360}{13}x+\left(-\frac{180}{13}\right)^{2}=-\frac{2100}{13}+\left(-\frac{180}{13}\right)^{2}
Divide -\frac{360}{13}, the coefficient of the x term, by 2 to get -\frac{180}{13}. Then add the square of -\frac{180}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{360}{13}x+\frac{32400}{169}=-\frac{2100}{13}+\frac{32400}{169}
Square -\frac{180}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{360}{13}x+\frac{32400}{169}=\frac{5100}{169}
Add -\frac{2100}{13} to \frac{32400}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{180}{13}\right)^{2}=\frac{5100}{169}
Factor x^{2}-\frac{360}{13}x+\frac{32400}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{180}{13}\right)^{2}}=\sqrt{\frac{5100}{169}}
Take the square root of both sides of the equation.
x-\frac{180}{13}=\frac{10\sqrt{51}}{13} x-\frac{180}{13}=-\frac{10\sqrt{51}}{13}
Simplify.
x=\frac{10\sqrt{51}+180}{13} x=\frac{180-10\sqrt{51}}{13}
Add \frac{180}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}