Solve for x
x = \frac{9 \sqrt{3} + 16}{13} \approx 2.429881328
x=\frac{16-9\sqrt{3}}{13}\approx 0.031657133
Graph
Share
Copied to clipboard
13x^{2}-32x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 13}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -32 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 13}}{2\times 13}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-52}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-32\right)±\sqrt{972}}{2\times 13}
Add 1024 to -52.
x=\frac{-\left(-32\right)±18\sqrt{3}}{2\times 13}
Take the square root of 972.
x=\frac{32±18\sqrt{3}}{2\times 13}
The opposite of -32 is 32.
x=\frac{32±18\sqrt{3}}{26}
Multiply 2 times 13.
x=\frac{18\sqrt{3}+32}{26}
Now solve the equation x=\frac{32±18\sqrt{3}}{26} when ± is plus. Add 32 to 18\sqrt{3}.
x=\frac{9\sqrt{3}+16}{13}
Divide 32+18\sqrt{3} by 26.
x=\frac{32-18\sqrt{3}}{26}
Now solve the equation x=\frac{32±18\sqrt{3}}{26} when ± is minus. Subtract 18\sqrt{3} from 32.
x=\frac{16-9\sqrt{3}}{13}
Divide 32-18\sqrt{3} by 26.
x=\frac{9\sqrt{3}+16}{13} x=\frac{16-9\sqrt{3}}{13}
The equation is now solved.
13x^{2}-32x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}-32x+1-1=-1
Subtract 1 from both sides of the equation.
13x^{2}-32x=-1
Subtracting 1 from itself leaves 0.
\frac{13x^{2}-32x}{13}=-\frac{1}{13}
Divide both sides by 13.
x^{2}-\frac{32}{13}x=-\frac{1}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{32}{13}x+\left(-\frac{16}{13}\right)^{2}=-\frac{1}{13}+\left(-\frac{16}{13}\right)^{2}
Divide -\frac{32}{13}, the coefficient of the x term, by 2 to get -\frac{16}{13}. Then add the square of -\frac{16}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{13}x+\frac{256}{169}=-\frac{1}{13}+\frac{256}{169}
Square -\frac{16}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{13}x+\frac{256}{169}=\frac{243}{169}
Add -\frac{1}{13} to \frac{256}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{13}\right)^{2}=\frac{243}{169}
Factor x^{2}-\frac{32}{13}x+\frac{256}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{13}\right)^{2}}=\sqrt{\frac{243}{169}}
Take the square root of both sides of the equation.
x-\frac{16}{13}=\frac{9\sqrt{3}}{13} x-\frac{16}{13}=-\frac{9\sqrt{3}}{13}
Simplify.
x=\frac{9\sqrt{3}+16}{13} x=\frac{16-9\sqrt{3}}{13}
Add \frac{16}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}