Solve for x
x = \frac{6 \sqrt{30} + 12}{13} \approx 3.451027188
x=\frac{12-6\sqrt{30}}{13}\approx -1.604873342
Graph
Share
Copied to clipboard
13x^{2}-24x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 13\left(-72\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -24 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 13\left(-72\right)}}{2\times 13}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-52\left(-72\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-24\right)±\sqrt{576+3744}}{2\times 13}
Multiply -52 times -72.
x=\frac{-\left(-24\right)±\sqrt{4320}}{2\times 13}
Add 576 to 3744.
x=\frac{-\left(-24\right)±12\sqrt{30}}{2\times 13}
Take the square root of 4320.
x=\frac{24±12\sqrt{30}}{2\times 13}
The opposite of -24 is 24.
x=\frac{24±12\sqrt{30}}{26}
Multiply 2 times 13.
x=\frac{12\sqrt{30}+24}{26}
Now solve the equation x=\frac{24±12\sqrt{30}}{26} when ± is plus. Add 24 to 12\sqrt{30}.
x=\frac{6\sqrt{30}+12}{13}
Divide 24+12\sqrt{30} by 26.
x=\frac{24-12\sqrt{30}}{26}
Now solve the equation x=\frac{24±12\sqrt{30}}{26} when ± is minus. Subtract 12\sqrt{30} from 24.
x=\frac{12-6\sqrt{30}}{13}
Divide 24-12\sqrt{30} by 26.
x=\frac{6\sqrt{30}+12}{13} x=\frac{12-6\sqrt{30}}{13}
The equation is now solved.
13x^{2}-24x-72=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}-24x-72-\left(-72\right)=-\left(-72\right)
Add 72 to both sides of the equation.
13x^{2}-24x=-\left(-72\right)
Subtracting -72 from itself leaves 0.
13x^{2}-24x=72
Subtract -72 from 0.
\frac{13x^{2}-24x}{13}=\frac{72}{13}
Divide both sides by 13.
x^{2}-\frac{24}{13}x=\frac{72}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{24}{13}x+\left(-\frac{12}{13}\right)^{2}=\frac{72}{13}+\left(-\frac{12}{13}\right)^{2}
Divide -\frac{24}{13}, the coefficient of the x term, by 2 to get -\frac{12}{13}. Then add the square of -\frac{12}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{13}x+\frac{144}{169}=\frac{72}{13}+\frac{144}{169}
Square -\frac{12}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{24}{13}x+\frac{144}{169}=\frac{1080}{169}
Add \frac{72}{13} to \frac{144}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{12}{13}\right)^{2}=\frac{1080}{169}
Factor x^{2}-\frac{24}{13}x+\frac{144}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{13}\right)^{2}}=\sqrt{\frac{1080}{169}}
Take the square root of both sides of the equation.
x-\frac{12}{13}=\frac{6\sqrt{30}}{13} x-\frac{12}{13}=-\frac{6\sqrt{30}}{13}
Simplify.
x=\frac{6\sqrt{30}+12}{13} x=\frac{12-6\sqrt{30}}{13}
Add \frac{12}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}