Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=40 ab=13\left(-22400\right)=-291200
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 13x^{2}+ax+bx-22400. To find a and b, set up a system to be solved.
-1,291200 -2,145600 -4,72800 -5,58240 -7,41600 -8,36400 -10,29120 -13,22400 -14,20800 -16,18200 -20,14560 -25,11648 -26,11200 -28,10400 -32,9100 -35,8320 -40,7280 -50,5824 -52,5600 -56,5200 -64,4550 -65,4480 -70,4160 -80,3640 -91,3200 -100,2912 -104,2800 -112,2600 -128,2275 -130,2240 -140,2080 -160,1820 -175,1664 -182,1600 -200,1456 -208,1400 -224,1300 -260,1120 -280,1040 -320,910 -325,896 -350,832 -364,800 -400,728 -416,700 -448,650 -455,640 -520,560
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -291200.
-1+291200=291199 -2+145600=145598 -4+72800=72796 -5+58240=58235 -7+41600=41593 -8+36400=36392 -10+29120=29110 -13+22400=22387 -14+20800=20786 -16+18200=18184 -20+14560=14540 -25+11648=11623 -26+11200=11174 -28+10400=10372 -32+9100=9068 -35+8320=8285 -40+7280=7240 -50+5824=5774 -52+5600=5548 -56+5200=5144 -64+4550=4486 -65+4480=4415 -70+4160=4090 -80+3640=3560 -91+3200=3109 -100+2912=2812 -104+2800=2696 -112+2600=2488 -128+2275=2147 -130+2240=2110 -140+2080=1940 -160+1820=1660 -175+1664=1489 -182+1600=1418 -200+1456=1256 -208+1400=1192 -224+1300=1076 -260+1120=860 -280+1040=760 -320+910=590 -325+896=571 -350+832=482 -364+800=436 -400+728=328 -416+700=284 -448+650=202 -455+640=185 -520+560=40
Calculate the sum for each pair.
a=-520 b=560
The solution is the pair that gives sum 40.
\left(13x^{2}-520x\right)+\left(560x-22400\right)
Rewrite 13x^{2}+40x-22400 as \left(13x^{2}-520x\right)+\left(560x-22400\right).
13x\left(x-40\right)+560\left(x-40\right)
Factor out 13x in the first and 560 in the second group.
\left(x-40\right)\left(13x+560\right)
Factor out common term x-40 by using distributive property.
x=40 x=-\frac{560}{13}
To find equation solutions, solve x-40=0 and 13x+560=0.
13x^{2}+40x-22400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\times 13\left(-22400\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, 40 for b, and -22400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 13\left(-22400\right)}}{2\times 13}
Square 40.
x=\frac{-40±\sqrt{1600-52\left(-22400\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-40±\sqrt{1600+1164800}}{2\times 13}
Multiply -52 times -22400.
x=\frac{-40±\sqrt{1166400}}{2\times 13}
Add 1600 to 1164800.
x=\frac{-40±1080}{2\times 13}
Take the square root of 1166400.
x=\frac{-40±1080}{26}
Multiply 2 times 13.
x=\frac{1040}{26}
Now solve the equation x=\frac{-40±1080}{26} when ± is plus. Add -40 to 1080.
x=40
Divide 1040 by 26.
x=-\frac{1120}{26}
Now solve the equation x=\frac{-40±1080}{26} when ± is minus. Subtract 1080 from -40.
x=-\frac{560}{13}
Reduce the fraction \frac{-1120}{26} to lowest terms by extracting and canceling out 2.
x=40 x=-\frac{560}{13}
The equation is now solved.
13x^{2}+40x-22400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
13x^{2}+40x-22400-\left(-22400\right)=-\left(-22400\right)
Add 22400 to both sides of the equation.
13x^{2}+40x=-\left(-22400\right)
Subtracting -22400 from itself leaves 0.
13x^{2}+40x=22400
Subtract -22400 from 0.
\frac{13x^{2}+40x}{13}=\frac{22400}{13}
Divide both sides by 13.
x^{2}+\frac{40}{13}x=\frac{22400}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}+\frac{40}{13}x+\left(\frac{20}{13}\right)^{2}=\frac{22400}{13}+\left(\frac{20}{13}\right)^{2}
Divide \frac{40}{13}, the coefficient of the x term, by 2 to get \frac{20}{13}. Then add the square of \frac{20}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{40}{13}x+\frac{400}{169}=\frac{22400}{13}+\frac{400}{169}
Square \frac{20}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{40}{13}x+\frac{400}{169}=\frac{291600}{169}
Add \frac{22400}{13} to \frac{400}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{20}{13}\right)^{2}=\frac{291600}{169}
Factor x^{2}+\frac{40}{13}x+\frac{400}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{20}{13}\right)^{2}}=\sqrt{\frac{291600}{169}}
Take the square root of both sides of the equation.
x+\frac{20}{13}=\frac{540}{13} x+\frac{20}{13}=-\frac{540}{13}
Simplify.
x=40 x=-\frac{560}{13}
Subtract \frac{20}{13} from both sides of the equation.