Evaluate
-\frac{2053}{2}=-1026.5
Factor
-\frac{2053}{2} = -1026\frac{1}{2} = -1026.5
Share
Copied to clipboard
117+\frac{711}{4}\times 2+101-40^{2}
Multiply 13 and 9 to get 117.
117+\frac{711\times 2}{4}+101-40^{2}
Express \frac{711}{4}\times 2 as a single fraction.
117+\frac{1422}{4}+101-40^{2}
Multiply 711 and 2 to get 1422.
117+\frac{711}{2}+101-40^{2}
Reduce the fraction \frac{1422}{4} to lowest terms by extracting and canceling out 2.
\frac{234}{2}+\frac{711}{2}+101-40^{2}
Convert 117 to fraction \frac{234}{2}.
\frac{234+711}{2}+101-40^{2}
Since \frac{234}{2} and \frac{711}{2} have the same denominator, add them by adding their numerators.
\frac{945}{2}+101-40^{2}
Add 234 and 711 to get 945.
\frac{945}{2}+\frac{202}{2}-40^{2}
Convert 101 to fraction \frac{202}{2}.
\frac{945+202}{2}-40^{2}
Since \frac{945}{2} and \frac{202}{2} have the same denominator, add them by adding their numerators.
\frac{1147}{2}-40^{2}
Add 945 and 202 to get 1147.
\frac{1147}{2}-1600
Calculate 40 to the power of 2 and get 1600.
\frac{1147}{2}-\frac{3200}{2}
Convert 1600 to fraction \frac{3200}{2}.
\frac{1147-3200}{2}
Since \frac{1147}{2} and \frac{3200}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{2053}{2}
Subtract 3200 from 1147 to get -2053.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}