Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

390\left(1+x\right)\left(1+5x\right)+450\left(1+5x\right)\left(1+8x\right)=78\left(1+10x\right)
Do the multiplications.
\left(390+390x\right)\left(1+5x\right)+450\left(1+5x\right)\left(1+8x\right)=78\left(1+10x\right)
Use the distributive property to multiply 390 by 1+x.
390+2340x+1950x^{2}+450\left(1+5x\right)\left(1+8x\right)=78\left(1+10x\right)
Use the distributive property to multiply 390+390x by 1+5x and combine like terms.
390+2340x+1950x^{2}+\left(450+2250x\right)\left(1+8x\right)=78\left(1+10x\right)
Use the distributive property to multiply 450 by 1+5x.
390+2340x+1950x^{2}+450+5850x+18000x^{2}=78\left(1+10x\right)
Use the distributive property to multiply 450+2250x by 1+8x and combine like terms.
840+2340x+1950x^{2}+5850x+18000x^{2}=78\left(1+10x\right)
Add 390 and 450 to get 840.
840+8190x+1950x^{2}+18000x^{2}=78\left(1+10x\right)
Combine 2340x and 5850x to get 8190x.
840+8190x+19950x^{2}=78\left(1+10x\right)
Combine 1950x^{2} and 18000x^{2} to get 19950x^{2}.
840+8190x+19950x^{2}=78+780x
Use the distributive property to multiply 78 by 1+10x.
840+8190x+19950x^{2}-78=780x
Subtract 78 from both sides.
762+8190x+19950x^{2}=780x
Subtract 78 from 840 to get 762.
762+8190x+19950x^{2}-780x=0
Subtract 780x from both sides.
762+7410x+19950x^{2}=0
Combine 8190x and -780x to get 7410x.
19950x^{2}+7410x+762=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7410±\sqrt{7410^{2}-4\times 19950\times 762}}{2\times 19950}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 19950 for a, 7410 for b, and 762 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7410±\sqrt{54908100-4\times 19950\times 762}}{2\times 19950}
Square 7410.
x=\frac{-7410±\sqrt{54908100-79800\times 762}}{2\times 19950}
Multiply -4 times 19950.
x=\frac{-7410±\sqrt{54908100-60807600}}{2\times 19950}
Multiply -79800 times 762.
x=\frac{-7410±\sqrt{-5899500}}{2\times 19950}
Add 54908100 to -60807600.
x=\frac{-7410±30\sqrt{6555}i}{2\times 19950}
Take the square root of -5899500.
x=\frac{-7410±30\sqrt{6555}i}{39900}
Multiply 2 times 19950.
x=\frac{-7410+30\sqrt{6555}i}{39900}
Now solve the equation x=\frac{-7410±30\sqrt{6555}i}{39900} when ± is plus. Add -7410 to 30i\sqrt{6555}.
x=\frac{\sqrt{6555}i}{1330}-\frac{13}{70}
Divide -7410+30i\sqrt{6555} by 39900.
x=\frac{-30\sqrt{6555}i-7410}{39900}
Now solve the equation x=\frac{-7410±30\sqrt{6555}i}{39900} when ± is minus. Subtract 30i\sqrt{6555} from -7410.
x=-\frac{\sqrt{6555}i}{1330}-\frac{13}{70}
Divide -7410-30i\sqrt{6555} by 39900.
x=\frac{\sqrt{6555}i}{1330}-\frac{13}{70} x=-\frac{\sqrt{6555}i}{1330}-\frac{13}{70}
The equation is now solved.
390\left(1+x\right)\left(1+5x\right)+450\left(1+5x\right)\left(1+8x\right)=78\left(1+10x\right)
Do the multiplications.
\left(390+390x\right)\left(1+5x\right)+450\left(1+5x\right)\left(1+8x\right)=78\left(1+10x\right)
Use the distributive property to multiply 390 by 1+x.
390+2340x+1950x^{2}+450\left(1+5x\right)\left(1+8x\right)=78\left(1+10x\right)
Use the distributive property to multiply 390+390x by 1+5x and combine like terms.
390+2340x+1950x^{2}+\left(450+2250x\right)\left(1+8x\right)=78\left(1+10x\right)
Use the distributive property to multiply 450 by 1+5x.
390+2340x+1950x^{2}+450+5850x+18000x^{2}=78\left(1+10x\right)
Use the distributive property to multiply 450+2250x by 1+8x and combine like terms.
840+2340x+1950x^{2}+5850x+18000x^{2}=78\left(1+10x\right)
Add 390 and 450 to get 840.
840+8190x+1950x^{2}+18000x^{2}=78\left(1+10x\right)
Combine 2340x and 5850x to get 8190x.
840+8190x+19950x^{2}=78\left(1+10x\right)
Combine 1950x^{2} and 18000x^{2} to get 19950x^{2}.
840+8190x+19950x^{2}=78+780x
Use the distributive property to multiply 78 by 1+10x.
840+8190x+19950x^{2}-780x=78
Subtract 780x from both sides.
840+7410x+19950x^{2}=78
Combine 8190x and -780x to get 7410x.
7410x+19950x^{2}=78-840
Subtract 840 from both sides.
7410x+19950x^{2}=-762
Subtract 840 from 78 to get -762.
19950x^{2}+7410x=-762
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{19950x^{2}+7410x}{19950}=-\frac{762}{19950}
Divide both sides by 19950.
x^{2}+\frac{7410}{19950}x=-\frac{762}{19950}
Dividing by 19950 undoes the multiplication by 19950.
x^{2}+\frac{13}{35}x=-\frac{762}{19950}
Reduce the fraction \frac{7410}{19950} to lowest terms by extracting and canceling out 570.
x^{2}+\frac{13}{35}x=-\frac{127}{3325}
Reduce the fraction \frac{-762}{19950} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{13}{35}x+\left(\frac{13}{70}\right)^{2}=-\frac{127}{3325}+\left(\frac{13}{70}\right)^{2}
Divide \frac{13}{35}, the coefficient of the x term, by 2 to get \frac{13}{70}. Then add the square of \frac{13}{70} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{35}x+\frac{169}{4900}=-\frac{127}{3325}+\frac{169}{4900}
Square \frac{13}{70} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{35}x+\frac{169}{4900}=-\frac{69}{18620}
Add -\frac{127}{3325} to \frac{169}{4900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{70}\right)^{2}=-\frac{69}{18620}
Factor x^{2}+\frac{13}{35}x+\frac{169}{4900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{70}\right)^{2}}=\sqrt{-\frac{69}{18620}}
Take the square root of both sides of the equation.
x+\frac{13}{70}=\frac{\sqrt{6555}i}{1330} x+\frac{13}{70}=-\frac{\sqrt{6555}i}{1330}
Simplify.
x=\frac{\sqrt{6555}i}{1330}-\frac{13}{70} x=-\frac{\sqrt{6555}i}{1330}-\frac{13}{70}
Subtract \frac{13}{70} from both sides of the equation.