Solve for x
x=\frac{1}{45}\approx 0.022222222
x=0
Graph
Share
Copied to clipboard
390\left(1+x\right)\left(1+5x\right)+390\left(1+5x\right)\left(1+8x\right)=780\left(1+10x\right)
Do the multiplications.
\left(390+390x\right)\left(1+5x\right)+390\left(1+5x\right)\left(1+8x\right)=780\left(1+10x\right)
Use the distributive property to multiply 390 by 1+x.
390+2340x+1950x^{2}+390\left(1+5x\right)\left(1+8x\right)=780\left(1+10x\right)
Use the distributive property to multiply 390+390x by 1+5x and combine like terms.
390+2340x+1950x^{2}+\left(390+1950x\right)\left(1+8x\right)=780\left(1+10x\right)
Use the distributive property to multiply 390 by 1+5x.
390+2340x+1950x^{2}+390+5070x+15600x^{2}=780\left(1+10x\right)
Use the distributive property to multiply 390+1950x by 1+8x and combine like terms.
780+2340x+1950x^{2}+5070x+15600x^{2}=780\left(1+10x\right)
Add 390 and 390 to get 780.
780+7410x+1950x^{2}+15600x^{2}=780\left(1+10x\right)
Combine 2340x and 5070x to get 7410x.
780+7410x+17550x^{2}=780\left(1+10x\right)
Combine 1950x^{2} and 15600x^{2} to get 17550x^{2}.
780+7410x+17550x^{2}=780+7800x
Use the distributive property to multiply 780 by 1+10x.
780+7410x+17550x^{2}-780=7800x
Subtract 780 from both sides.
7410x+17550x^{2}=7800x
Subtract 780 from 780 to get 0.
7410x+17550x^{2}-7800x=0
Subtract 7800x from both sides.
-390x+17550x^{2}=0
Combine 7410x and -7800x to get -390x.
17550x^{2}-390x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-390\right)±\sqrt{\left(-390\right)^{2}}}{2\times 17550}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17550 for a, -390 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-390\right)±390}{2\times 17550}
Take the square root of \left(-390\right)^{2}.
x=\frac{390±390}{2\times 17550}
The opposite of -390 is 390.
x=\frac{390±390}{35100}
Multiply 2 times 17550.
x=\frac{780}{35100}
Now solve the equation x=\frac{390±390}{35100} when ± is plus. Add 390 to 390.
x=\frac{1}{45}
Reduce the fraction \frac{780}{35100} to lowest terms by extracting and canceling out 780.
x=\frac{0}{35100}
Now solve the equation x=\frac{390±390}{35100} when ± is minus. Subtract 390 from 390.
x=0
Divide 0 by 35100.
x=\frac{1}{45} x=0
The equation is now solved.
390\left(1+x\right)\left(1+5x\right)+390\left(1+5x\right)\left(1+8x\right)=780\left(1+10x\right)
Do the multiplications.
\left(390+390x\right)\left(1+5x\right)+390\left(1+5x\right)\left(1+8x\right)=780\left(1+10x\right)
Use the distributive property to multiply 390 by 1+x.
390+2340x+1950x^{2}+390\left(1+5x\right)\left(1+8x\right)=780\left(1+10x\right)
Use the distributive property to multiply 390+390x by 1+5x and combine like terms.
390+2340x+1950x^{2}+\left(390+1950x\right)\left(1+8x\right)=780\left(1+10x\right)
Use the distributive property to multiply 390 by 1+5x.
390+2340x+1950x^{2}+390+5070x+15600x^{2}=780\left(1+10x\right)
Use the distributive property to multiply 390+1950x by 1+8x and combine like terms.
780+2340x+1950x^{2}+5070x+15600x^{2}=780\left(1+10x\right)
Add 390 and 390 to get 780.
780+7410x+1950x^{2}+15600x^{2}=780\left(1+10x\right)
Combine 2340x and 5070x to get 7410x.
780+7410x+17550x^{2}=780\left(1+10x\right)
Combine 1950x^{2} and 15600x^{2} to get 17550x^{2}.
780+7410x+17550x^{2}=780+7800x
Use the distributive property to multiply 780 by 1+10x.
780+7410x+17550x^{2}-7800x=780
Subtract 7800x from both sides.
780-390x+17550x^{2}=780
Combine 7410x and -7800x to get -390x.
-390x+17550x^{2}=780-780
Subtract 780 from both sides.
-390x+17550x^{2}=0
Subtract 780 from 780 to get 0.
17550x^{2}-390x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{17550x^{2}-390x}{17550}=\frac{0}{17550}
Divide both sides by 17550.
x^{2}+\left(-\frac{390}{17550}\right)x=\frac{0}{17550}
Dividing by 17550 undoes the multiplication by 17550.
x^{2}-\frac{1}{45}x=\frac{0}{17550}
Reduce the fraction \frac{-390}{17550} to lowest terms by extracting and canceling out 390.
x^{2}-\frac{1}{45}x=0
Divide 0 by 17550.
x^{2}-\frac{1}{45}x+\left(-\frac{1}{90}\right)^{2}=\left(-\frac{1}{90}\right)^{2}
Divide -\frac{1}{45}, the coefficient of the x term, by 2 to get -\frac{1}{90}. Then add the square of -\frac{1}{90} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{45}x+\frac{1}{8100}=\frac{1}{8100}
Square -\frac{1}{90} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{90}\right)^{2}=\frac{1}{8100}
Factor x^{2}-\frac{1}{45}x+\frac{1}{8100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{90}\right)^{2}}=\sqrt{\frac{1}{8100}}
Take the square root of both sides of the equation.
x-\frac{1}{90}=\frac{1}{90} x-\frac{1}{90}=-\frac{1}{90}
Simplify.
x=\frac{1}{45} x=0
Add \frac{1}{90} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}