Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(13\sqrt{x}\right)^{2}=\left(x+36\right)^{2}
Square both sides of the equation.
13^{2}\left(\sqrt{x}\right)^{2}=\left(x+36\right)^{2}
Expand \left(13\sqrt{x}\right)^{2}.
169\left(\sqrt{x}\right)^{2}=\left(x+36\right)^{2}
Calculate 13 to the power of 2 and get 169.
169x=\left(x+36\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
169x=x^{2}+72x+1296
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+36\right)^{2}.
169x-x^{2}=72x+1296
Subtract x^{2} from both sides.
169x-x^{2}-72x=1296
Subtract 72x from both sides.
97x-x^{2}=1296
Combine 169x and -72x to get 97x.
97x-x^{2}-1296=0
Subtract 1296 from both sides.
-x^{2}+97x-1296=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-97±\sqrt{97^{2}-4\left(-1\right)\left(-1296\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 97 for b, and -1296 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-97±\sqrt{9409-4\left(-1\right)\left(-1296\right)}}{2\left(-1\right)}
Square 97.
x=\frac{-97±\sqrt{9409+4\left(-1296\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-97±\sqrt{9409-5184}}{2\left(-1\right)}
Multiply 4 times -1296.
x=\frac{-97±\sqrt{4225}}{2\left(-1\right)}
Add 9409 to -5184.
x=\frac{-97±65}{2\left(-1\right)}
Take the square root of 4225.
x=\frac{-97±65}{-2}
Multiply 2 times -1.
x=-\frac{32}{-2}
Now solve the equation x=\frac{-97±65}{-2} when ± is plus. Add -97 to 65.
x=16
Divide -32 by -2.
x=-\frac{162}{-2}
Now solve the equation x=\frac{-97±65}{-2} when ± is minus. Subtract 65 from -97.
x=81
Divide -162 by -2.
x=16 x=81
The equation is now solved.
13\sqrt{16}=16+36
Substitute 16 for x in the equation 13\sqrt{x}=x+36.
52=52
Simplify. The value x=16 satisfies the equation.
13\sqrt{81}=81+36
Substitute 81 for x in the equation 13\sqrt{x}=x+36.
117=117
Simplify. The value x=81 satisfies the equation.
x=16 x=81
List all solutions of 13\sqrt{x}=x+36.