Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\frac{78+5}{6}-\left(-\frac{3}{4}\right)+\frac{5}{6}-\left(-\frac{7}{12}\right)
Multiply 13 and 6 to get 78.
\frac{83}{6}-\left(-\frac{3}{4}\right)+\frac{5}{6}-\left(-\frac{7}{12}\right)
Add 78 and 5 to get 83.
\frac{83}{6}+\frac{3}{4}+\frac{5}{6}-\left(-\frac{7}{12}\right)
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{166}{12}+\frac{9}{12}+\frac{5}{6}-\left(-\frac{7}{12}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{83}{6} and \frac{3}{4} to fractions with denominator 12.
\frac{166+9}{12}+\frac{5}{6}-\left(-\frac{7}{12}\right)
Since \frac{166}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{175}{12}+\frac{5}{6}-\left(-\frac{7}{12}\right)
Add 166 and 9 to get 175.
\frac{175}{12}+\frac{10}{12}-\left(-\frac{7}{12}\right)
Least common multiple of 12 and 6 is 12. Convert \frac{175}{12} and \frac{5}{6} to fractions with denominator 12.
\frac{175+10}{12}-\left(-\frac{7}{12}\right)
Since \frac{175}{12} and \frac{10}{12} have the same denominator, add them by adding their numerators.
\frac{185}{12}-\left(-\frac{7}{12}\right)
Add 175 and 10 to get 185.
\frac{185}{12}+\frac{7}{12}
The opposite of -\frac{7}{12} is \frac{7}{12}.
\frac{185+7}{12}
Since \frac{185}{12} and \frac{7}{12} have the same denominator, add them by adding their numerators.
\frac{192}{12}
Add 185 and 7 to get 192.
16
Divide 192 by 12 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}