Verify
false
Share
Copied to clipboard
\frac{\frac{13\times 5+3}{5}}{\frac{6}{5}}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Divide 3 by 3 to get 1.
\frac{\left(13\times 5+3\right)\times 5}{5\times 6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Divide \frac{13\times 5+3}{5} by \frac{6}{5} by multiplying \frac{13\times 5+3}{5} by the reciprocal of \frac{6}{5}.
\frac{3+5\times 13}{6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Cancel out 5 in both numerator and denominator.
\frac{3+65}{6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Multiply 5 and 13 to get 65.
\frac{68}{6}+\frac{3}{6}=\frac{1}{\frac{2}{6}}
Add 3 and 65 to get 68.
\frac{68+3}{6}=\frac{1}{\frac{2}{6}}
Since \frac{68}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{71}{6}=\frac{1}{\frac{2}{6}}
Add 68 and 3 to get 71.
\frac{71}{6}=\frac{6}{2}
Divide 1 by \frac{2}{6} by multiplying 1 by the reciprocal of \frac{2}{6}.
\frac{71}{6}=3
Divide 6 by 2 to get 3.
\frac{71}{6}=\frac{18}{6}
Convert 3 to fraction \frac{18}{6}.
\text{false}
Compare \frac{71}{6} and \frac{18}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}