Evaluate
\frac{239}{210}\approx 1.138095238
Factor
\frac{239}{2 \cdot 3 \cdot 5 \cdot 7} = 1\frac{29}{210} = 1.138095238095238
Share
Copied to clipboard
\frac{13\times 14+13}{14\times 13}+0.4-\frac{1}{3}
Express \frac{\frac{13\times 14+13}{14}}{13} as a single fraction.
\frac{182+13}{14\times 13}+0.4-\frac{1}{3}
Multiply 13 and 14 to get 182.
\frac{195}{14\times 13}+0.4-\frac{1}{3}
Add 182 and 13 to get 195.
\frac{195}{182}+0.4-\frac{1}{3}
Multiply 14 and 13 to get 182.
\frac{15}{14}+0.4-\frac{1}{3}
Reduce the fraction \frac{195}{182} to lowest terms by extracting and canceling out 13.
\frac{15}{14}+\frac{2}{5}-\frac{1}{3}
Convert decimal number 0.4 to fraction \frac{4}{10}. Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{75}{70}+\frac{28}{70}-\frac{1}{3}
Least common multiple of 14 and 5 is 70. Convert \frac{15}{14} and \frac{2}{5} to fractions with denominator 70.
\frac{75+28}{70}-\frac{1}{3}
Since \frac{75}{70} and \frac{28}{70} have the same denominator, add them by adding their numerators.
\frac{103}{70}-\frac{1}{3}
Add 75 and 28 to get 103.
\frac{309}{210}-\frac{70}{210}
Least common multiple of 70 and 3 is 210. Convert \frac{103}{70} and \frac{1}{3} to fractions with denominator 210.
\frac{309-70}{210}
Since \frac{309}{210} and \frac{70}{210} have the same denominator, subtract them by subtracting their numerators.
\frac{239}{210}
Subtract 70 from 309 to get 239.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}