Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

13\times \frac{2x^{5}\times 3}{\left(x^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
13\times \frac{2x^{5}\times 3}{x^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
13\times \frac{2\times 3}{x}
Cancel out x^{5} in both numerator and denominator.
13\times \frac{6}{x}
Multiply 2 and 3 to get 6.
\frac{13\times 6}{x}
Express 13\times \frac{6}{x} as a single fraction.
\frac{78}{x}
Multiply 13 and 6 to get 78.
\frac{\mathrm{d}}{\mathrm{d}x}(13\times \frac{2x^{5}\times 3}{\left(x^{2}\right)^{3}})
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\mathrm{d}}{\mathrm{d}x}(13\times \frac{2x^{5}\times 3}{x^{6}})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(13\times \frac{2\times 3}{x})
Cancel out x^{5} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(13\times \frac{6}{x})
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{13\times 6}{x})
Express 13\times \frac{6}{x} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{78}{x})
Multiply 13 and 6 to get 78.
-78x^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-78x^{-2}
Subtract 1 from -1.