Evaluate
\frac{36\sqrt{1660307}x_{31}}{11143}
Differentiate w.r.t. x_31
\frac{36 \sqrt{1660307}}{11143} = 4.162886496072137
Share
Copied to clipboard
12x_{31}\times \frac{\sqrt{1341}}{\sqrt{11143}}
Rewrite the square root of the division \sqrt{\frac{1341}{11143}} as the division of square roots \frac{\sqrt{1341}}{\sqrt{11143}}.
12x_{31}\times \frac{3\sqrt{149}}{\sqrt{11143}}
Factor 1341=3^{2}\times 149. Rewrite the square root of the product \sqrt{3^{2}\times 149} as the product of square roots \sqrt{3^{2}}\sqrt{149}. Take the square root of 3^{2}.
12x_{31}\times \frac{3\sqrt{149}\sqrt{11143}}{\left(\sqrt{11143}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{149}}{\sqrt{11143}} by multiplying numerator and denominator by \sqrt{11143}.
12x_{31}\times \frac{3\sqrt{149}\sqrt{11143}}{11143}
The square of \sqrt{11143} is 11143.
12x_{31}\times \frac{3\sqrt{1660307}}{11143}
To multiply \sqrt{149} and \sqrt{11143}, multiply the numbers under the square root.
\frac{12\times 3\sqrt{1660307}}{11143}x_{31}
Express 12\times \frac{3\sqrt{1660307}}{11143} as a single fraction.
\frac{36\sqrt{1660307}}{11143}x_{31}
Multiply 12 and 3 to get 36.
\frac{36\sqrt{1660307}x_{31}}{11143}
Express \frac{36\sqrt{1660307}}{11143}x_{31} as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}