Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
-9x^{2}+12x-4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=12 ab=-9\left(-4\right)=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=6 b=6
The solution is the pair that gives sum 12.
\left(-9x^{2}+6x\right)+\left(6x-4\right)
Rewrite -9x^{2}+12x-4 as \left(-9x^{2}+6x\right)+\left(6x-4\right).
-3x\left(3x-2\right)+2\left(3x-2\right)
Factor out -3x in the first and 2 in the second group.
\left(3x-2\right)\left(-3x+2\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=\frac{2}{3}
To find equation solutions, solve 3x-2=0 and -3x+2=0.
-9x^{2}+12x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 12 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
Square 12.
x=\frac{-12±\sqrt{144+36\left(-4\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-12±\sqrt{144-144}}{2\left(-9\right)}
Multiply 36 times -4.
x=\frac{-12±\sqrt{0}}{2\left(-9\right)}
Add 144 to -144.
x=-\frac{12}{2\left(-9\right)}
Take the square root of 0.
x=-\frac{12}{-18}
Multiply 2 times -9.
x=\frac{2}{3}
Reduce the fraction \frac{-12}{-18} to lowest terms by extracting and canceling out 6.
-9x^{2}+12x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-9x^{2}+12x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
-9x^{2}+12x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
-9x^{2}+12x=4
Subtract -4 from 0.
\frac{-9x^{2}+12x}{-9}=\frac{4}{-9}
Divide both sides by -9.
x^{2}+\frac{12}{-9}x=\frac{4}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{4}{3}x=\frac{4}{-9}
Reduce the fraction \frac{12}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{4}{3}x=-\frac{4}{9}
Divide 4 by -9.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{-4+4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=0
Add -\frac{4}{9} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{3}\right)^{2}=0
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{2}{3}=0 x-\frac{2}{3}=0
Simplify.
x=\frac{2}{3} x=\frac{2}{3}
Add \frac{2}{3} to both sides of the equation.
x=\frac{2}{3}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}