Solve for x
x=-\frac{1-65y}{2\left(23y+6\right)}
y\neq -\frac{6}{23}
Solve for y
y=-\frac{12x+1}{46x-65}
x\neq \frac{65}{46}
Graph
Share
Copied to clipboard
\left(12+46y\right)x=65y-1
Combine all terms containing x.
\left(46y+12\right)x=65y-1
The equation is in standard form.
\frac{\left(46y+12\right)x}{46y+12}=\frac{65y-1}{46y+12}
Divide both sides by 46y+12.
x=\frac{65y-1}{46y+12}
Dividing by 46y+12 undoes the multiplication by 46y+12.
x=\frac{65y-1}{2\left(23y+6\right)}
Divide 65y-1 by 46y+12.
12x+46xy-65y=-1
Subtract 65y from both sides.
46xy-65y=-1-12x
Subtract 12x from both sides.
\left(46x-65\right)y=-1-12x
Combine all terms containing y.
\left(46x-65\right)y=-12x-1
The equation is in standard form.
\frac{\left(46x-65\right)y}{46x-65}=\frac{-12x-1}{46x-65}
Divide both sides by 46x-65.
y=\frac{-12x-1}{46x-65}
Dividing by 46x-65 undoes the multiplication by 46x-65.
y=-\frac{12x+1}{46x-65}
Divide -1-12x by 46x-65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}