Solve for k
k = -\frac{4 \sqrt{5}}{5} \approx -1.788854382
k = \frac{4 \sqrt{5}}{5} \approx 1.788854382
Share
Copied to clipboard
1296=200k^{2}+25k^{4}+400
Use the distributive property to multiply k^{2}+4 by 100+25k^{2} and combine like terms.
200k^{2}+25k^{4}+400=1296
Swap sides so that all variable terms are on the left hand side.
200k^{2}+25k^{4}+400-1296=0
Subtract 1296 from both sides.
200k^{2}+25k^{4}-896=0
Subtract 1296 from 400 to get -896.
25t^{2}+200t-896=0
Substitute t for k^{2}.
t=\frac{-200±\sqrt{200^{2}-4\times 25\left(-896\right)}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 25 for a, 200 for b, and -896 for c in the quadratic formula.
t=\frac{-200±360}{50}
Do the calculations.
t=\frac{16}{5} t=-\frac{56}{5}
Solve the equation t=\frac{-200±360}{50} when ± is plus and when ± is minus.
k=\frac{4\sqrt{5}}{5} k=-\frac{4\sqrt{5}}{5}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}