Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

1296=200k^{2}+25k^{4}+400
Use the distributive property to multiply k^{2}+4 by 100+25k^{2} and combine like terms.
200k^{2}+25k^{4}+400=1296
Swap sides so that all variable terms are on the left hand side.
200k^{2}+25k^{4}+400-1296=0
Subtract 1296 from both sides.
200k^{2}+25k^{4}-896=0
Subtract 1296 from 400 to get -896.
25t^{2}+200t-896=0
Substitute t for k^{2}.
t=\frac{-200±\sqrt{200^{2}-4\times 25\left(-896\right)}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 25 for a, 200 for b, and -896 for c in the quadratic formula.
t=\frac{-200±360}{50}
Do the calculations.
t=\frac{16}{5} t=-\frac{56}{5}
Solve the equation t=\frac{-200±360}{50} when ± is plus and when ± is minus.
k=\frac{4\sqrt{5}}{5} k=-\frac{4\sqrt{5}}{5}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.