Evaluate
\frac{1293}{134}\approx 9.649253731
Factor
\frac{3 \cdot 431}{2 \cdot 67} = 9\frac{87}{134} = 9.649253731343284
Share
Copied to clipboard
\begin{array}{l}\phantom{134)}\phantom{1}\\134\overline{)1293}\\\end{array}
Use the 1^{st} digit 1 from dividend 1293
\begin{array}{l}\phantom{134)}0\phantom{2}\\134\overline{)1293}\\\end{array}
Since 1 is less than 134, use the next digit 2 from dividend 1293 and add 0 to the quotient
\begin{array}{l}\phantom{134)}0\phantom{3}\\134\overline{)1293}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1293
\begin{array}{l}\phantom{134)}00\phantom{4}\\134\overline{)1293}\\\end{array}
Since 12 is less than 134, use the next digit 9 from dividend 1293 and add 0 to the quotient
\begin{array}{l}\phantom{134)}00\phantom{5}\\134\overline{)1293}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1293
\begin{array}{l}\phantom{134)}000\phantom{6}\\134\overline{)1293}\\\end{array}
Since 129 is less than 134, use the next digit 3 from dividend 1293 and add 0 to the quotient
\begin{array}{l}\phantom{134)}000\phantom{7}\\134\overline{)1293}\\\end{array}
Use the 4^{th} digit 3 from dividend 1293
\begin{array}{l}\phantom{134)}0009\phantom{8}\\134\overline{)1293}\\\phantom{134)}\underline{\phantom{}1206\phantom{}}\\\phantom{134)99}87\\\end{array}
Find closest multiple of 134 to 1293. We see that 9 \times 134 = 1206 is the nearest. Now subtract 1206 from 1293 to get reminder 87. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }87
Since 87 is less than 134, stop the division. The reminder is 87. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}