Solve for n
n=\sqrt{646}-1\approx 24.416530054
n=-\sqrt{646}-1\approx -26.416530054
Share
Copied to clipboard
4n+2n^{2}=1290
Swap sides so that all variable terms are on the left hand side.
4n+2n^{2}-1290=0
Subtract 1290 from both sides.
2n^{2}+4n-1290=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-4±\sqrt{4^{2}-4\times 2\left(-1290\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -1290 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4±\sqrt{16-4\times 2\left(-1290\right)}}{2\times 2}
Square 4.
n=\frac{-4±\sqrt{16-8\left(-1290\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-4±\sqrt{16+10320}}{2\times 2}
Multiply -8 times -1290.
n=\frac{-4±\sqrt{10336}}{2\times 2}
Add 16 to 10320.
n=\frac{-4±4\sqrt{646}}{2\times 2}
Take the square root of 10336.
n=\frac{-4±4\sqrt{646}}{4}
Multiply 2 times 2.
n=\frac{4\sqrt{646}-4}{4}
Now solve the equation n=\frac{-4±4\sqrt{646}}{4} when ± is plus. Add -4 to 4\sqrt{646}.
n=\sqrt{646}-1
Divide -4+4\sqrt{646} by 4.
n=\frac{-4\sqrt{646}-4}{4}
Now solve the equation n=\frac{-4±4\sqrt{646}}{4} when ± is minus. Subtract 4\sqrt{646} from -4.
n=-\sqrt{646}-1
Divide -4-4\sqrt{646} by 4.
n=\sqrt{646}-1 n=-\sqrt{646}-1
The equation is now solved.
4n+2n^{2}=1290
Swap sides so that all variable terms are on the left hand side.
2n^{2}+4n=1290
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2n^{2}+4n}{2}=\frac{1290}{2}
Divide both sides by 2.
n^{2}+\frac{4}{2}n=\frac{1290}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}+2n=\frac{1290}{2}
Divide 4 by 2.
n^{2}+2n=645
Divide 1290 by 2.
n^{2}+2n+1^{2}=645+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+2n+1=645+1
Square 1.
n^{2}+2n+1=646
Add 645 to 1.
\left(n+1\right)^{2}=646
Factor n^{2}+2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+1\right)^{2}}=\sqrt{646}
Take the square root of both sides of the equation.
n+1=\sqrt{646} n+1=-\sqrt{646}
Simplify.
n=\sqrt{646}-1 n=-\sqrt{646}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}