Evaluate
\frac{129}{20}=6.45
Factor
\frac{3 \cdot 43}{2 ^ {2} \cdot 5} = 6\frac{9}{20} = 6.45
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)129}\\\end{array}
Use the 1^{st} digit 1 from dividend 129
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)129}\\\end{array}
Since 1 is less than 20, use the next digit 2 from dividend 129 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)129}\\\end{array}
Use the 2^{nd} digit 2 from dividend 129
\begin{array}{l}\phantom{20)}00\phantom{4}\\20\overline{)129}\\\end{array}
Since 12 is less than 20, use the next digit 9 from dividend 129 and add 0 to the quotient
\begin{array}{l}\phantom{20)}00\phantom{5}\\20\overline{)129}\\\end{array}
Use the 3^{rd} digit 9 from dividend 129
\begin{array}{l}\phantom{20)}006\phantom{6}\\20\overline{)129}\\\phantom{20)}\underline{\phantom{}120\phantom{}}\\\phantom{20)99}9\\\end{array}
Find closest multiple of 20 to 129. We see that 6 \times 20 = 120 is the nearest. Now subtract 120 from 129 to get reminder 9. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }9
Since 9 is less than 20, stop the division. The reminder is 9. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}