Evaluate
512
Factor
2^{9}
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)12800}\\\end{array}
Use the 1^{st} digit 1 from dividend 12800
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)12800}\\\end{array}
Since 1 is less than 25, use the next digit 2 from dividend 12800 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)12800}\\\end{array}
Use the 2^{nd} digit 2 from dividend 12800
\begin{array}{l}\phantom{25)}00\phantom{4}\\25\overline{)12800}\\\end{array}
Since 12 is less than 25, use the next digit 8 from dividend 12800 and add 0 to the quotient
\begin{array}{l}\phantom{25)}00\phantom{5}\\25\overline{)12800}\\\end{array}
Use the 3^{rd} digit 8 from dividend 12800
\begin{array}{l}\phantom{25)}005\phantom{6}\\25\overline{)12800}\\\phantom{25)}\underline{\phantom{}125\phantom{99}}\\\phantom{25)99}3\\\end{array}
Find closest multiple of 25 to 128. We see that 5 \times 25 = 125 is the nearest. Now subtract 125 from 128 to get reminder 3. Add 5 to quotient.
\begin{array}{l}\phantom{25)}005\phantom{7}\\25\overline{)12800}\\\phantom{25)}\underline{\phantom{}125\phantom{99}}\\\phantom{25)99}30\\\end{array}
Use the 4^{th} digit 0 from dividend 12800
\begin{array}{l}\phantom{25)}0051\phantom{8}\\25\overline{)12800}\\\phantom{25)}\underline{\phantom{}125\phantom{99}}\\\phantom{25)99}30\\\phantom{25)}\underline{\phantom{99}25\phantom{9}}\\\phantom{25)999}5\\\end{array}
Find closest multiple of 25 to 30. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 30 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{25)}0051\phantom{9}\\25\overline{)12800}\\\phantom{25)}\underline{\phantom{}125\phantom{99}}\\\phantom{25)99}30\\\phantom{25)}\underline{\phantom{99}25\phantom{9}}\\\phantom{25)999}50\\\end{array}
Use the 5^{th} digit 0 from dividend 12800
\begin{array}{l}\phantom{25)}00512\phantom{10}\\25\overline{)12800}\\\phantom{25)}\underline{\phantom{}125\phantom{99}}\\\phantom{25)99}30\\\phantom{25)}\underline{\phantom{99}25\phantom{9}}\\\phantom{25)999}50\\\phantom{25)}\underline{\phantom{999}50\phantom{}}\\\phantom{25)99999}0\\\end{array}
Find closest multiple of 25 to 50. We see that 2 \times 25 = 50 is the nearest. Now subtract 50 from 50 to get reminder 0. Add 2 to quotient.
\text{Quotient: }512 \text{Reminder: }0
Since 0 is less than 25, stop the division. The reminder is 0. The topmost line 00512 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 512.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}