Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

128\left(1+x\right)^{2}=200
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
128\left(1+2x+x^{2}\right)=200
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
128+256x+128x^{2}=200
Use the distributive property to multiply 128 by 1+2x+x^{2}.
128+256x+128x^{2}-200=0
Subtract 200 from both sides.
-72+256x+128x^{2}=0
Subtract 200 from 128 to get -72.
128x^{2}+256x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-256±\sqrt{256^{2}-4\times 128\left(-72\right)}}{2\times 128}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 128 for a, 256 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-256±\sqrt{65536-4\times 128\left(-72\right)}}{2\times 128}
Square 256.
x=\frac{-256±\sqrt{65536-512\left(-72\right)}}{2\times 128}
Multiply -4 times 128.
x=\frac{-256±\sqrt{65536+36864}}{2\times 128}
Multiply -512 times -72.
x=\frac{-256±\sqrt{102400}}{2\times 128}
Add 65536 to 36864.
x=\frac{-256±320}{2\times 128}
Take the square root of 102400.
x=\frac{-256±320}{256}
Multiply 2 times 128.
x=\frac{64}{256}
Now solve the equation x=\frac{-256±320}{256} when ± is plus. Add -256 to 320.
x=\frac{1}{4}
Reduce the fraction \frac{64}{256} to lowest terms by extracting and canceling out 64.
x=-\frac{576}{256}
Now solve the equation x=\frac{-256±320}{256} when ± is minus. Subtract 320 from -256.
x=-\frac{9}{4}
Reduce the fraction \frac{-576}{256} to lowest terms by extracting and canceling out 64.
x=\frac{1}{4} x=-\frac{9}{4}
The equation is now solved.
128\left(1+x\right)^{2}=200
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
128\left(1+2x+x^{2}\right)=200
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
128+256x+128x^{2}=200
Use the distributive property to multiply 128 by 1+2x+x^{2}.
256x+128x^{2}=200-128
Subtract 128 from both sides.
256x+128x^{2}=72
Subtract 128 from 200 to get 72.
128x^{2}+256x=72
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{128x^{2}+256x}{128}=\frac{72}{128}
Divide both sides by 128.
x^{2}+\frac{256}{128}x=\frac{72}{128}
Dividing by 128 undoes the multiplication by 128.
x^{2}+2x=\frac{72}{128}
Divide 256 by 128.
x^{2}+2x=\frac{9}{16}
Reduce the fraction \frac{72}{128} to lowest terms by extracting and canceling out 8.
x^{2}+2x+1^{2}=\frac{9}{16}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{9}{16}+1
Square 1.
x^{2}+2x+1=\frac{25}{16}
Add \frac{9}{16} to 1.
\left(x+1\right)^{2}=\frac{25}{16}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x+1=\frac{5}{4} x+1=-\frac{5}{4}
Simplify.
x=\frac{1}{4} x=-\frac{9}{4}
Subtract 1 from both sides of the equation.