Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
128+128\left(1+x\right)+128\left(1+x\right)^{2}=608
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
128+128+128x+128\left(1+x\right)^{2}=608
Use the distributive property to multiply 128 by 1+x.
256+128x+128\left(1+x\right)^{2}=608
Add 128 and 128 to get 256.
256+128x+128\left(1+2x+x^{2}\right)=608
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
256+128x+128+256x+128x^{2}=608
Use the distributive property to multiply 128 by 1+2x+x^{2}.
384+128x+256x+128x^{2}=608
Add 256 and 128 to get 384.
384+384x+128x^{2}=608
Combine 128x and 256x to get 384x.
384+384x+128x^{2}-608=0
Subtract 608 from both sides.
-224+384x+128x^{2}=0
Subtract 608 from 384 to get -224.
128x^{2}+384x-224=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-384±\sqrt{384^{2}-4\times 128\left(-224\right)}}{2\times 128}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 128 for a, 384 for b, and -224 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-384±\sqrt{147456-4\times 128\left(-224\right)}}{2\times 128}
Square 384.
x=\frac{-384±\sqrt{147456-512\left(-224\right)}}{2\times 128}
Multiply -4 times 128.
x=\frac{-384±\sqrt{147456+114688}}{2\times 128}
Multiply -512 times -224.
x=\frac{-384±\sqrt{262144}}{2\times 128}
Add 147456 to 114688.
x=\frac{-384±512}{2\times 128}
Take the square root of 262144.
x=\frac{-384±512}{256}
Multiply 2 times 128.
x=\frac{128}{256}
Now solve the equation x=\frac{-384±512}{256} when ± is plus. Add -384 to 512.
x=\frac{1}{2}
Reduce the fraction \frac{128}{256} to lowest terms by extracting and canceling out 128.
x=-\frac{896}{256}
Now solve the equation x=\frac{-384±512}{256} when ± is minus. Subtract 512 from -384.
x=-\frac{7}{2}
Reduce the fraction \frac{-896}{256} to lowest terms by extracting and canceling out 128.
x=\frac{1}{2} x=-\frac{7}{2}
The equation is now solved.
128+128\left(1+x\right)+128\left(1+x\right)^{2}=608
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
128+128+128x+128\left(1+x\right)^{2}=608
Use the distributive property to multiply 128 by 1+x.
256+128x+128\left(1+x\right)^{2}=608
Add 128 and 128 to get 256.
256+128x+128\left(1+2x+x^{2}\right)=608
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
256+128x+128+256x+128x^{2}=608
Use the distributive property to multiply 128 by 1+2x+x^{2}.
384+128x+256x+128x^{2}=608
Add 256 and 128 to get 384.
384+384x+128x^{2}=608
Combine 128x and 256x to get 384x.
384x+128x^{2}=608-384
Subtract 384 from both sides.
384x+128x^{2}=224
Subtract 384 from 608 to get 224.
128x^{2}+384x=224
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{128x^{2}+384x}{128}=\frac{224}{128}
Divide both sides by 128.
x^{2}+\frac{384}{128}x=\frac{224}{128}
Dividing by 128 undoes the multiplication by 128.
x^{2}+3x=\frac{224}{128}
Divide 384 by 128.
x^{2}+3x=\frac{7}{4}
Reduce the fraction \frac{224}{128} to lowest terms by extracting and canceling out 32.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{7+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=4
Add \frac{7}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=4
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+\frac{3}{2}=2 x+\frac{3}{2}=-2
Simplify.
x=\frac{1}{2} x=-\frac{7}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}