Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

128x^{2}+384x=124
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
128x^{2}+384x-124=124-124
Subtract 124 from both sides of the equation.
128x^{2}+384x-124=0
Subtracting 124 from itself leaves 0.
x=\frac{-384±\sqrt{384^{2}-4\times 128\left(-124\right)}}{2\times 128}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 128 for a, 384 for b, and -124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-384±\sqrt{147456-4\times 128\left(-124\right)}}{2\times 128}
Square 384.
x=\frac{-384±\sqrt{147456-512\left(-124\right)}}{2\times 128}
Multiply -4 times 128.
x=\frac{-384±\sqrt{147456+63488}}{2\times 128}
Multiply -512 times -124.
x=\frac{-384±\sqrt{210944}}{2\times 128}
Add 147456 to 63488.
x=\frac{-384±32\sqrt{206}}{2\times 128}
Take the square root of 210944.
x=\frac{-384±32\sqrt{206}}{256}
Multiply 2 times 128.
x=\frac{32\sqrt{206}-384}{256}
Now solve the equation x=\frac{-384±32\sqrt{206}}{256} when ± is plus. Add -384 to 32\sqrt{206}.
x=\frac{\sqrt{206}}{8}-\frac{3}{2}
Divide -384+32\sqrt{206} by 256.
x=\frac{-32\sqrt{206}-384}{256}
Now solve the equation x=\frac{-384±32\sqrt{206}}{256} when ± is minus. Subtract 32\sqrt{206} from -384.
x=-\frac{\sqrt{206}}{8}-\frac{3}{2}
Divide -384-32\sqrt{206} by 256.
x=\frac{\sqrt{206}}{8}-\frac{3}{2} x=-\frac{\sqrt{206}}{8}-\frac{3}{2}
The equation is now solved.
128x^{2}+384x=124
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{128x^{2}+384x}{128}=\frac{124}{128}
Divide both sides by 128.
x^{2}+\frac{384}{128}x=\frac{124}{128}
Dividing by 128 undoes the multiplication by 128.
x^{2}+3x=\frac{124}{128}
Divide 384 by 128.
x^{2}+3x=\frac{31}{32}
Reduce the fraction \frac{124}{128} to lowest terms by extracting and canceling out 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{31}{32}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{31}{32}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{103}{32}
Add \frac{31}{32} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{103}{32}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{103}{32}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{206}}{8} x+\frac{3}{2}=-\frac{\sqrt{206}}{8}
Simplify.
x=\frac{\sqrt{206}}{8}-\frac{3}{2} x=-\frac{\sqrt{206}}{8}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.