Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

128x^{2}+384x+384-608=0
Subtract 608 from both sides.
128x^{2}+384x-224=0
Subtract 608 from 384 to get -224.
4x^{2}+12x-7=0
Divide both sides by 32.
a+b=12 ab=4\left(-7\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-2 b=14
The solution is the pair that gives sum 12.
\left(4x^{2}-2x\right)+\left(14x-7\right)
Rewrite 4x^{2}+12x-7 as \left(4x^{2}-2x\right)+\left(14x-7\right).
2x\left(2x-1\right)+7\left(2x-1\right)
Factor out 2x in the first and 7 in the second group.
\left(2x-1\right)\left(2x+7\right)
Factor out common term 2x-1 by using distributive property.
x=\frac{1}{2} x=-\frac{7}{2}
To find equation solutions, solve 2x-1=0 and 2x+7=0.
128x^{2}+384x+384=608
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
128x^{2}+384x+384-608=608-608
Subtract 608 from both sides of the equation.
128x^{2}+384x+384-608=0
Subtracting 608 from itself leaves 0.
128x^{2}+384x-224=0
Subtract 608 from 384.
x=\frac{-384±\sqrt{384^{2}-4\times 128\left(-224\right)}}{2\times 128}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 128 for a, 384 for b, and -224 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-384±\sqrt{147456-4\times 128\left(-224\right)}}{2\times 128}
Square 384.
x=\frac{-384±\sqrt{147456-512\left(-224\right)}}{2\times 128}
Multiply -4 times 128.
x=\frac{-384±\sqrt{147456+114688}}{2\times 128}
Multiply -512 times -224.
x=\frac{-384±\sqrt{262144}}{2\times 128}
Add 147456 to 114688.
x=\frac{-384±512}{2\times 128}
Take the square root of 262144.
x=\frac{-384±512}{256}
Multiply 2 times 128.
x=\frac{128}{256}
Now solve the equation x=\frac{-384±512}{256} when ± is plus. Add -384 to 512.
x=\frac{1}{2}
Reduce the fraction \frac{128}{256} to lowest terms by extracting and canceling out 128.
x=-\frac{896}{256}
Now solve the equation x=\frac{-384±512}{256} when ± is minus. Subtract 512 from -384.
x=-\frac{7}{2}
Reduce the fraction \frac{-896}{256} to lowest terms by extracting and canceling out 128.
x=\frac{1}{2} x=-\frac{7}{2}
The equation is now solved.
128x^{2}+384x+384=608
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
128x^{2}+384x+384-384=608-384
Subtract 384 from both sides of the equation.
128x^{2}+384x=608-384
Subtracting 384 from itself leaves 0.
128x^{2}+384x=224
Subtract 384 from 608.
\frac{128x^{2}+384x}{128}=\frac{224}{128}
Divide both sides by 128.
x^{2}+\frac{384}{128}x=\frac{224}{128}
Dividing by 128 undoes the multiplication by 128.
x^{2}+3x=\frac{224}{128}
Divide 384 by 128.
x^{2}+3x=\frac{7}{4}
Reduce the fraction \frac{224}{128} to lowest terms by extracting and canceling out 32.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{7+9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=4
Add \frac{7}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=4
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+\frac{3}{2}=2 x+\frac{3}{2}=-2
Simplify.
x=\frac{1}{2} x=-\frac{7}{2}
Subtract \frac{3}{2} from both sides of the equation.