Evaluate
-\frac{491}{4}=-122.75
Factor
-\frac{491}{4} = -122\frac{3}{4} = -122.75
Share
Copied to clipboard
128^{-\frac{2}{7}}-\left(625^{-3}\right)^{\frac{-1}{4}}+14\times 2401^{\frac{-1}{4}}
Fraction \frac{-2}{7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
\frac{1}{4}-\left(625^{-3}\right)^{\frac{-1}{4}}+14\times 2401^{\frac{-1}{4}}
Calculate 128 to the power of -\frac{2}{7} and get \frac{1}{4}.
\frac{1}{4}-\left(\frac{1}{244140625}\right)^{\frac{-1}{4}}+14\times 2401^{\frac{-1}{4}}
Calculate 625 to the power of -3 and get \frac{1}{244140625}.
\frac{1}{4}-\left(\frac{1}{244140625}\right)^{-\frac{1}{4}}+14\times 2401^{\frac{-1}{4}}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{1}{4}-125+14\times 2401^{\frac{-1}{4}}
Calculate \frac{1}{244140625} to the power of -\frac{1}{4} and get 125.
-\frac{499}{4}+14\times 2401^{\frac{-1}{4}}
Subtract 125 from \frac{1}{4} to get -\frac{499}{4}.
-\frac{499}{4}+14\times 2401^{-\frac{1}{4}}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-\frac{499}{4}+14\times \frac{1}{7}
Calculate 2401 to the power of -\frac{1}{4} and get \frac{1}{7}.
-\frac{499}{4}+2
Multiply 14 and \frac{1}{7} to get 2.
-\frac{491}{4}
Add -\frac{499}{4} and 2 to get -\frac{491}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}