Solve for x
x=\frac{847\sqrt{267}}{534}+127.95\approx 153.867779099
Graph
Share
Copied to clipboard
127.95+127.95\sqrt{24.03}-x\sqrt{24.03}=0.9
Use the distributive property to multiply 127.95-x by \sqrt{24.03}.
127.95\sqrt{24.03}-x\sqrt{24.03}=0.9-127.95
Subtract 127.95 from both sides.
127.95\sqrt{24.03}-x\sqrt{24.03}=-127.05
Subtract 127.95 from 0.9 to get -127.05.
-x\sqrt{24.03}=-127.05-127.95\sqrt{24.03}
Subtract 127.95\sqrt{24.03} from both sides.
\left(-\sqrt{24.03}\right)x=\frac{-2559\sqrt{24.03}-2541}{20}
The equation is in standard form.
\frac{\left(-\sqrt{24.03}\right)x}{-\sqrt{24.03}}=\frac{-\frac{7677\sqrt{267}}{200}-127.05}{-\sqrt{24.03}}
Divide both sides by -\sqrt{24.03}.
x=\frac{-\frac{7677\sqrt{267}}{200}-127.05}{-\sqrt{24.03}}
Dividing by -\sqrt{24.03} undoes the multiplication by -\sqrt{24.03}.
x=\frac{847\sqrt{267}}{534}+\frac{2559}{20}
Divide -127.05-\frac{7677\sqrt{267}}{200} by -\sqrt{24.03}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}