Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

127t^{2}-277t+492=0
Substitute t for x^{2}.
t=\frac{-\left(-277\right)±\sqrt{\left(-277\right)^{2}-4\times 127\times 492}}{2\times 127}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 127 for a, -277 for b, and 492 for c in the quadratic formula.
t=\frac{277±\sqrt{-173207}}{254}
Do the calculations.
t=\frac{277+\sqrt{173207}i}{254} t=\frac{-\sqrt{173207}i+277}{254}
Solve the equation t=\frac{277±\sqrt{-173207}}{254} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{1007804436}e^{\frac{\arctan(\frac{\sqrt{173207}}{277})i+2\pi i}{2}}}{127} x=\frac{\sqrt[4]{1007804436}e^{\frac{\arctan(\frac{\sqrt{173207}}{277})i}{2}}}{127} x=\frac{\sqrt[4]{1007804436}e^{-\frac{\arctan(\frac{\sqrt{173207}}{277})i}{2}}}{127} x=\frac{\sqrt[4]{1007804436}e^{\frac{-\arctan(\frac{\sqrt{173207}}{277})i+2\pi i}{2}}}{127}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.