Evaluate
\frac{631}{500}=1.262
Factor
\frac{631}{2 ^ {2} \cdot 5 ^ {3}} = 1\frac{131}{500} = 1.262
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)1262}\\\end{array}
Use the 1^{st} digit 1 from dividend 1262
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)1262}\\\end{array}
Since 1 is less than 1000, use the next digit 2 from dividend 1262 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)1262}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1262
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)1262}\\\end{array}
Since 12 is less than 1000, use the next digit 6 from dividend 1262 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)1262}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1262
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)1262}\\\end{array}
Since 126 is less than 1000, use the next digit 2 from dividend 1262 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)1262}\\\end{array}
Use the 4^{th} digit 2 from dividend 1262
\begin{array}{l}\phantom{1000)}0001\phantom{8}\\1000\overline{)1262}\\\phantom{1000)}\underline{\phantom{}1000\phantom{}}\\\phantom{1000)9}262\\\end{array}
Find closest multiple of 1000 to 1262. We see that 1 \times 1000 = 1000 is the nearest. Now subtract 1000 from 1262 to get reminder 262. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }262
Since 262 is less than 1000, stop the division. The reminder is 262. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}