Solve for x
x=\frac{25y}{2}+3
Solve for y
y=\frac{2\left(x-3\right)}{25}
Graph
Share
Copied to clipboard
125y+3x-13x=-30
Subtract 13x from both sides.
125y-10x=-30
Combine 3x and -13x to get -10x.
-10x=-30-125y
Subtract 125y from both sides.
-10x=-125y-30
The equation is in standard form.
\frac{-10x}{-10}=\frac{-125y-30}{-10}
Divide both sides by -10.
x=\frac{-125y-30}{-10}
Dividing by -10 undoes the multiplication by -10.
x=\frac{25y}{2}+3
Divide -30-125y by -10.
125y=13x-30-3x
Subtract 3x from both sides.
125y=10x-30
Combine 13x and -3x to get 10x.
\frac{125y}{125}=\frac{10x-30}{125}
Divide both sides by 125.
y=\frac{10x-30}{125}
Dividing by 125 undoes the multiplication by 125.
y=\frac{2x-6}{25}
Divide -30+10x by 125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}