Solve for x
x=-\frac{y}{5}-\frac{z}{25}-\frac{1}{125}
Solve for y
y=-\frac{z}{5}-5x-\frac{1}{25}
Share
Copied to clipboard
125x+5z+1=-25y
Subtract 25y from both sides. Anything subtracted from zero gives its negation.
125x+1=-25y-5z
Subtract 5z from both sides.
125x=-25y-5z-1
Subtract 1 from both sides.
\frac{125x}{125}=\frac{-25y-5z-1}{125}
Divide both sides by 125.
x=\frac{-25y-5z-1}{125}
Dividing by 125 undoes the multiplication by 125.
x=-\frac{y}{5}-\frac{z}{25}-\frac{1}{125}
Divide -25y-5z-1 by 125.
25y+5z+1=-125x
Subtract 125x from both sides. Anything subtracted from zero gives its negation.
25y+1=-125x-5z
Subtract 5z from both sides.
25y=-125x-5z-1
Subtract 1 from both sides.
\frac{25y}{25}=\frac{-125x-5z-1}{25}
Divide both sides by 25.
y=\frac{-125x-5z-1}{25}
Dividing by 25 undoes the multiplication by 25.
y=-\frac{z}{5}-5x-\frac{1}{25}
Divide -125x-5z-1 by 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}