Evaluate
\frac{125777}{72}\approx 1746.902777778
Factor
\frac{125777}{2 ^ {3} \cdot 3 ^ {2}} = 1746\frac{65}{72} = 1746.9027777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{72)}\phantom{1}\\72\overline{)125777}\\\end{array}
Use the 1^{st} digit 1 from dividend 125777
\begin{array}{l}\phantom{72)}0\phantom{2}\\72\overline{)125777}\\\end{array}
Since 1 is less than 72, use the next digit 2 from dividend 125777 and add 0 to the quotient
\begin{array}{l}\phantom{72)}0\phantom{3}\\72\overline{)125777}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125777
\begin{array}{l}\phantom{72)}00\phantom{4}\\72\overline{)125777}\\\end{array}
Since 12 is less than 72, use the next digit 5 from dividend 125777 and add 0 to the quotient
\begin{array}{l}\phantom{72)}00\phantom{5}\\72\overline{)125777}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125777
\begin{array}{l}\phantom{72)}001\phantom{6}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}53\\\end{array}
Find closest multiple of 72 to 125. We see that 1 \times 72 = 72 is the nearest. Now subtract 72 from 125 to get reminder 53. Add 1 to quotient.
\begin{array}{l}\phantom{72)}001\phantom{7}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}537\\\end{array}
Use the 4^{th} digit 7 from dividend 125777
\begin{array}{l}\phantom{72)}0017\phantom{8}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}537\\\phantom{72)}\underline{\phantom{9}504\phantom{99}}\\\phantom{72)99}33\\\end{array}
Find closest multiple of 72 to 537. We see that 7 \times 72 = 504 is the nearest. Now subtract 504 from 537 to get reminder 33. Add 7 to quotient.
\begin{array}{l}\phantom{72)}0017\phantom{9}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}537\\\phantom{72)}\underline{\phantom{9}504\phantom{99}}\\\phantom{72)99}337\\\end{array}
Use the 5^{th} digit 7 from dividend 125777
\begin{array}{l}\phantom{72)}00174\phantom{10}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}537\\\phantom{72)}\underline{\phantom{9}504\phantom{99}}\\\phantom{72)99}337\\\phantom{72)}\underline{\phantom{99}288\phantom{9}}\\\phantom{72)999}49\\\end{array}
Find closest multiple of 72 to 337. We see that 4 \times 72 = 288 is the nearest. Now subtract 288 from 337 to get reminder 49. Add 4 to quotient.
\begin{array}{l}\phantom{72)}00174\phantom{11}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}537\\\phantom{72)}\underline{\phantom{9}504\phantom{99}}\\\phantom{72)99}337\\\phantom{72)}\underline{\phantom{99}288\phantom{9}}\\\phantom{72)999}497\\\end{array}
Use the 6^{th} digit 7 from dividend 125777
\begin{array}{l}\phantom{72)}001746\phantom{12}\\72\overline{)125777}\\\phantom{72)}\underline{\phantom{9}72\phantom{999}}\\\phantom{72)9}537\\\phantom{72)}\underline{\phantom{9}504\phantom{99}}\\\phantom{72)99}337\\\phantom{72)}\underline{\phantom{99}288\phantom{9}}\\\phantom{72)999}497\\\phantom{72)}\underline{\phantom{999}432\phantom{}}\\\phantom{72)9999}65\\\end{array}
Find closest multiple of 72 to 497. We see that 6 \times 72 = 432 is the nearest. Now subtract 432 from 497 to get reminder 65. Add 6 to quotient.
\text{Quotient: }1746 \text{Reminder: }65
Since 65 is less than 72, stop the division. The reminder is 65. The topmost line 001746 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1746.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}